Microtubules and microfilaments in tip growth: evidence that microtubules impose polarity on protonemal growth in Physcomitrella patens
In this study we compare the contributions of Factin and microtubules to tip growth in filamentous cells of the moss Physcomitrella patens. In tip growth, expansion seems to be restricted to the hemispherical apical dome. Cytoskeletal elements have been suspected, from drug studies, to be involved in this but electron microscopy has generally not confirmed the presence of an apical cytoskeleton. However, in a previous immunofluorescence study we reported that microtubules could be seen to focus upon the apical dome in tip cells of the moss P. patens. In the present investigation F-actin has also been detected at the apices of these cells. Anti-cytoskeletal drugs were therefore used to differentiate between the roles of actin filaments and microtubules in tip growth. At high concentrations (30μM), the herbicide cremart de-polymerized microtubules and caused tip swelling. F-actin was still present under such conditions but its fragmentation by cytochalasin D suppressed this herbicide-induced swelling. On its own, cytochalasin D arrested tip growth without causing swollen tips. At lower concentrations, cremart disorganized microtubules rather than causing their complete depolymerization. Under these conditions, new but swollen growing points were initiated along the filament. The addition of taxol to cremart-treated filaments tended to reduce swelling and to re-polarize outgrowth. With particular combinations of these drugs, multiple lateral out-growths were initiated in the vicinity of the nucleus. It is concluded: (1) that F-actin is present at the tips of Physcomitrella caulonemal apical cells; (2) that unfragmented F-actin is necessary for outgrowth; (3) that even disorganized microtubules permit some degree of outgrowth but that an unperturbed distribution of axial microtubules, focussing upon an apex, is essential in order to impose tubular shape and directionality upon expansion.