Polymorphism of tubulin assembly in vitro

1989 ◽  
Vol 94 (3) ◽  
pp. 479-488
Author(s):  
PAULA KARECLA ◽  
ELIZABETH HIRST ◽  
PETER BAYLEY

Polymorphism in the self-assembly of tubulin dimer and microtubule protein (tubulin plus the microtubule-associated proteins) has been investigated as a function of systematic variation of solution composition (i.e. buffer ion, [glycerol] and [Mg2+]). The nature of the assembly product was examined using negative staining and thin sectioning electron microscopy. The morphology of the product of assembly of tubulin dimer was found to be strongly influenced by the concentration of glycerol and Mg2+ in Pipes and Mes buffers; the effects are less marked in phosphate buffer. Formation of bona fide microtubules in O.l M-Pipes occurs for a limited range of solution conditions (e.g. with [glycerol] <2 M and [Mg2+]<1mM). Conditions of elevated [glycerol] and [Mg2+], which enhance the rate and extent of assembly, have the adverse effect of strongly promoting the formation of polymorphic forms in addition to, and in place of, the normal microtubule morphology. In both Pipes and Mes buffers, increasing [glycerol] from 1 to 3 M favours the formation of extended multiply curved sheets, apparently made up from a basic structure with an S-like crosssection. By contrast, increasing [Mg2+] promotes the formation of junctions between microtubule walls, giving products whose cross-section shows multiple hook-like appendages, attached to closed microtubules. The assembly of tubulin dimer in a typical ‘dimer assembly buffer’ (e.g. 0.05-0.1 MMes, with 1–3.4M-glycerol and 2–7mM-Mg2+), invariably produces substantial proportions of nonmicrotubule structures such as open sheets, ribbons, and hooked structures. We conclude that the self-assembly of tubulin dimer exclusively into bona fide microtubules occurs over a very restricted range of solution conditions in the normally used Pipes- and Mes-based buffers. Deviation from these conditions readily promotes the formation of mixtures of polymorphic forms. Many buffer systems used for the assembly and disassembly of microtubules composed of tubulin dimer appear likely to promote the formation of structures related to, but significantly different from, normal microtubules. This represents a cautionary factor in the interpretation of in vitro assembly and disassembly properties of microtubules

1992 ◽  
Vol 3 (1) ◽  
pp. 29-47 ◽  
Author(s):  
G Barnes ◽  
K A Louie ◽  
D Botstein

Conditions were established for the self-assembly of milligram amounts of purified Saccharomyces cerevisiae tubulin. Microtubules assembled with pure yeast tubulin were not stabilized by taxol; hybrid microtubules containing substoichiometric amounts of bovine tubulin were stabilized. Yeast microtubule-associated proteins (MAPs) were identified on affinity matrices made from hybrid and all-bovine microtubules. About 25 yeast MAPs were isolated. The amino-terminal sequences of several of these were determined: three were known metabolic enzymes, two were GTP-binding proteins (including the product of the SAR1 gene), and three were novel proteins not found in sequence databases. Affinity-purified antisera were generated against synthetic peptides corresponding to two of the apparently novel proteins (38 and 50 kDa). Immunofluorescence microscopy showed that both these proteins colocalize with intra- and extranuclear microtubules in vivo.


2021 ◽  
Vol 220 (3) ◽  
Author(s):  
Michal Wieczorek ◽  
Shih-Chieh Ti ◽  
Linas Urnavicius ◽  
Kelly R. Molloy ◽  
Amol Aher ◽  
...  

The formation of cellular microtubule networks is regulated by the γ-tubulin ring complex (γ-TuRC). This ∼2.3 MD assembly of >31 proteins includes γ-tubulin and GCP2-6, as well as MZT1 and an actin-like protein in a “lumenal bridge” (LB). The challenge of reconstituting the γ-TuRC has limited dissections of its assembly and function. Here, we report a biochemical reconstitution of the human γ-TuRC (γ-TuRC-GFP) as a ∼35 S complex that nucleates microtubules in vitro. In addition, we generate a subcomplex, γ-TuRCΔLB-GFP, which lacks MZT1 and actin. We show that γ-TuRCΔLB-GFP nucleates microtubules in a guanine nucleotide–dependent manner and with similar efficiency as the holocomplex. Electron microscopy reveals that γ-TuRC-GFP resembles the native γ-TuRC architecture, while γ-TuRCΔLB-GFP adopts a partial cone shape presenting only 8–10 γ-tubulin subunits and lacks a well-ordered lumenal bridge. Our results show that the γ-TuRC can be reconstituted using a limited set of proteins and suggest that the LB facilitates the self-assembly of regulatory interfaces around a microtubule-nucleating “core” in the holocomplex.


1990 ◽  
Vol 68 (10) ◽  
pp. 1202-1209 ◽  
Author(s):  
Robert A. B. Keates

A method is described for measuring the quantities of stable and dynamic microtubules in a population in vitro. The method exploits the tendency of dynamic microtubules to depolymerize rapidly after being sheared. Stable microtubules, such as those protected by microtubule-associated proteins (MAPs), are broken to a smaller size by shearing, but do not depolymerize into subunits. The usual difficulty with this procedure is that the tubulin released from the dynamic microtubules rapidly repolymerizes before the end point of depolymerization can be measured. This has been overcome by including a small quantity of tubulin–colchicine complex in the mixture to block the repolymerization. For a total of 24 μM tubulin in a polymerization mixture, 10 μM of the sample polymerized originally under the conditions used. When 1.05 μM tubulin–colchicine complex was added at the time of shearing, the dynamic microtubules depolymerized, but the tubulin was released was unable to repolymerize and a small fraction of stable microtubules that resisted shear-induced depolymerization could then be detected. When traces of MAPs (0.23–2.8% by mass) were included in the tubulin mixture, the fraction of stable microtubules increased from 5% in the absence of added MAPs to 41% in the presence of 2.8% MAPs. All the MAPs in the mixture were found in the stable fraction and this stable fraction forms early during microtubule assembly. Calculations on the extent of enrichment of MAPs in the stable fraction indicated that as little as 4% MAPs in a microtubule protected it from shear-induced disassembly. The results suggest that low levels of MAPs may distribute nonrandomly in the microtubule population.Key words: dynamics, microtubules, tubulin, microtubule-associated proteins, self-assembly.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Lars-Anders Carlson ◽  
Yun Bai ◽  
Sarah C Keane ◽  
Jennifer A Doudna ◽  
James H Hurley

HIV-1 Gag selects and packages a dimeric, unspliced viral RNA in the context of a large excess of cytosolic human RNAs. As Gag assembles on the plasma membrane, the HIV-1 genome is enriched relative to cellular RNAs by an unknown mechanism. We used a minimal system consisting of purified RNAs, recombinant HIV-1 Gag and giant unilamellar vesicles to recapitulate the selective packaging of the 5’ untranslated region of the HIV-1 genome in the presence of excess competitor RNA. Mutations in the CA-CTD domain of Gag which subtly affect the self-assembly of Gag abrogated RNA selectivity. We further found that tRNA suppresses Gag membrane binding less when Gag has bound viral RNA. The ability of HIV-1 Gag to selectively package its RNA genome and its self-assembly on membranes are thus interdependent on one another.


2008 ◽  
Vol 22 (S1) ◽  
Author(s):  
Amélie Lavoie ◽  
Paquet Claudie ◽  
Danielle Larouche ◽  
Claudia Fugère ◽  
Israel Martel ◽  
...  

Biology Open ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. bio056432 ◽  
Author(s):  
Shohei Yamamoto ◽  
Ryoichi Yabuki ◽  
Daiju Kitagawa

ABSTRACTThe deuterosome is a non-membranous organelle involved in large-scale centriole amplification during multiciliogenesis. Deuterosomes are specifically assembled during the process of multiciliogenesis. However, the molecular mechanisms underlying deuterosome formation are poorly understood. In this study, we investigated the molecular properties of deuterosome protein 1 (Deup1), an essential protein involved in deuterosome assembly. We found that Deup1 has the ability to self-assemble into macromolecular condensates both in vitro and in cells. The Deup1-containing structures formed in multiciliogenesis and the Deup1 condensates self-assembled in vitro showed low turnover of Deup1, suggesting that Deup1 forms highly stable structures. Our biochemical analyses revealed that an increase of the concentration of Deup1 and a crowded molecular environment both facilitate Deup1 self-assembly. The self-assembly of Deup1 relies on its N-terminal region, which contains multiple coiled coil domains. Using an optogenetic approach, we demonstrated that self-assembly and the C-terminal half of Deup1 were sufficient to spatially compartmentalize centrosomal protein 152 (Cep152) and polo like kinase 4 (Plk4), master components for centriole biogenesis, in the cytoplasm. Collectively, the present data suggest that Deup1 forms the structural core of the deuterosome through self-assembly into stable macromolecular condensates.This article has an associated First Person interview with the first author of the paper.


2020 ◽  
Vol 2020 ◽  
pp. 1-23 ◽  
Author(s):  
Vincent Roy ◽  
Brice Magne ◽  
Maude Vaillancourt-Audet ◽  
Mathieu Blais ◽  
Stéphane Chabaud ◽  
...  

Cancer research has considerably progressed with the improvement of in vitro study models, helping to understand the key role of the tumor microenvironment in cancer development and progression. Over the last few years, complex 3D human cell culture systems have gained much popularity over in vivo models, as they accurately mimic the tumor microenvironment and allow high-throughput drug screening. Of particular interest, in vitrohuman 3D tissue constructs, produced by the self-assembly method of tissue engineering, have been successfully used to model the tumor microenvironment and now represent a very promising approach to further develop diverse cancer models. In this review, we describe the importance of the tumor microenvironment and present the existing in vitro cancer models generated through the self-assembly method of tissue engineering. Lastly, we highlight the relevance of this approach to mimic various and complex tumors, including basal cell carcinoma, cutaneous neurofibroma, skin melanoma, bladder cancer, and uveal melanoma.


2006 ◽  
Vol 12 (4) ◽  
pp. 513-523 ◽  
Author(s):  
Albert D. G. de Roos

Current theories about the origin of the eukaryotic cell all assume that during evolution a prokaryotic cell acquired a nucleus. Here, it is shown that a scenario in which the nucleus acquired a plasma membrane is inherently less complex because existing interfaces remain intact during evolution. Using this scenario, the evolution to the first eukaryotic cell can be modeled in three steps, based on the self-assembly of cellular membranes by lipid-protein interactions. First, the inclusion of chromosomes in a nuclear membrane is mediated by interactions between laminar proteins and lipid vesicles. Second, the formation of a primitive endoplasmic reticulum, or exomembrane, is induced by the expression of intrinsic membrane proteins. Third, a plasma membrane is formed by fusion of exomembrane vesicles on the cytoskeletal protein scaffold. All three self-assembly processes occur both in vivo and in vitro. This new model provides a gradual Darwinistic evolutionary model of the origins of the eukaryotic cell and suggests an inherent ability of an ancestral, primitive genome to induce its own inclusion in a membrane.


Nanoscale ◽  
2019 ◽  
Vol 11 (34) ◽  
pp. 15907-15916 ◽  
Author(s):  
Zhuha Zhou ◽  
Ying Piao ◽  
Lingqiao Hao ◽  
Guanyu Wang ◽  
Zhuxian Zhou ◽  
...  

pH-responsive nanofibers are obtained by the self-assembly of the camptothecin prodrug and surface-coating, which can efficiently enter cancer cells in vitro and penetrate deep into tumor tissue in vivo.


2019 ◽  
Vol 15 ◽  
pp. P524-P525
Author(s):  
Gal Bitan ◽  
Clément Despres ◽  
Jing Di ◽  
François-Xavier Cantrelle ◽  
Zizheng Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document