Binding of hexabrachion (tenascin) to the extracellular matrix and substratum and its effect on cell adhesion

1990 ◽  
Vol 95 (2) ◽  
pp. 263-277
Author(s):  
V.A. Lightner ◽  
H.P. Erickson

Hexabrachion is a large glycoprotein of the extracellular matrix (ECM) that is prominent in embryogenesis, wound healing and tumorigenesis. Because of the role of extracellular matrix proteins in the regulation of cell differentiation and migration, the interaction of hexabrachion with cells as well as with other components of the ECM is of great interest. Early reports suggested that hexabrachion does not bind to fibronectin or gelatin but does bind to chondroitin sulfate proteoglycans. However, more recent reports have suggested that hexabrachion binds to fibronectin and inhibits cell adhesion as well as cell migration on fibronectin. We have found no evidence of strong hexabrachion-fibronectin binding on either a solid-phase ELISA assay or in a fluid-phase sedimentation assay in which the reactants were allowed to dissociate. However, hexabrachion sedimentation was accelerated in a gradient containing fibronectin throughout. This demonstrates an association between hexabrachions and fibronectin, but the complex is apparently weak and readily reversible. The solid-phase ELISA also shows no evidence of hexabrachion binding to gelatin, laminin or types I, III, IV or V collagen. Hexabrachion does not support strong cell attachment of the cell lines tested. Moreover, hexabrachion can inhibit cell attachment to fibronectin. We demonstrate here that this inhibition requires the hexabrachion to be able to bind to the plastic substratum. The results suggest that hexabrachion inhibition is via a steric inhibition. When the hexabrachion molecules bind to the plastic, they cover up a significant fraction of the underlying fibronectin molecules. Antibody studies are presented that show that hexabrachion can nonspecifically block access of immunoglobulin G molecules to the underlying matrix. This steric blocking is not unique to hexabrachion.

1992 ◽  
Vol 116 (3) ◽  
pp. 809-815 ◽  
Author(s):  
K M Neugebauer ◽  
K A Venstrom ◽  
L F Reichardt

The adhesive interactions of circulating blood cells are tightly regulated, receptor-mediated events. To establish a model for studies on regulation of cell adhesion, we have examined the adhesive properties of the HD11 chick myeloblast cell line. Function-perturbing antibodies were used to show that integrins containing the beta 1 subunit mediate HD11 cell attachment to several distinct extracellular matrix proteins, specifically fibronectin, collagen, vitronectin, and fibrinogen. This is the first evidence that an integrin heterodimer in the beta 1 family functions as a receptor for fibrinogen. While the alpha v beta 1 heterodimer has been shown to function as a vitronectin receptor on some cells, this heterodimer could not be detected on HD11 cells. Instead, results suggest that the beta 1 subunit associates with different, unidentified alpha subunit(s) to form receptors for vitronectin and fibrinogen. Results using function-blocking antibodies also demonstrate that on these cells, additional receptors for vitronectin are formed by alpha v beta 3 and alpha v associated with an unidentified 100-kD beta subunit. The adhesive interactions of HD11 cells with these extracellular matrix ligands were shown to be regulated by lipopolysaccharide treatment, making the HD11 cell line attractive for studies of mechanisms regulating cell adhesion. In contrast to primary macrophage which rapidly exhibit enhanced adhesion to laminin and collagen upon activation, activated HD11 cells exhibited reduced adhesion to most extracellular matrix constituents.


2003 ◽  
Vol 51 (4) ◽  
pp. 421-428 ◽  
Author(s):  
Jacquelyn Brown ◽  
Paul C. Bridgman

The initial stages of nerve outgrowth carried out by growth cones occur in three fundamental cyclic steps. Each of these steps appears to require myosin II activity to variable degrees. The steps include the following: (a) exploration, involving extensions and retractions that are driven and controlled by the interaction of actin retrograde flow and polymerization; (b) adhesion of new extensions to the substrate, which has been shown to be mediated by complex interactions between extracellular matrix proteins, cell adhesion proteins, and the actin cytoskeleton; and (c) traction force generated during forward advance of the growth cone, resulting in the production of tension on the neurite.


2009 ◽  
Vol 297 (1) ◽  
pp. H304-H312 ◽  
Author(s):  
S. Negash ◽  
S. R. Narasimhan ◽  
W. Zhou ◽  
J. Liu ◽  
F. L. Wei ◽  
...  

Exposure to prolonged hypoxia can result in pulmonary vascular remodeling and pulmonary hypertension. Hypoxia induces pulmonary vascular smooth muscle cell (PVSMC) proliferation and vascular remodeling by affecting cell adhesion and migration and secretion of extracellular matrix proteins. We previously showed that acute hypoxia decreases cGMP-dependent protein kinase (PKG) activity in PVSMC and that PKG plays a role in maintaining the differentiated contractile phenotype in normoxia. In this study, we investigated the effect of hypoxia on PVSMC adhesion and migration and the role of PKG in these functions. Ovine fetal pulmonary artery SMC were incubated in normoxia (Po2 ∼100 Torr) or hypoxia (Po2 ∼30–40 Torr) or treated with the PKG inhibitor DT-3 for 24 h in normoxia. To further study the role of PKG in the modulation of adhesion and migration, PVSMC were transiently transfected with a full-length PKG1α [PKG-green fluorescent protein (GFP)] or a dominant-negative construct (G1αR-GFP). Cell adhesion to extracellular matrix proteins was determined, and integrin-mediated adhesion was assessed by α/β-integrin-mediated cell adhesion array. Exposure to hypoxia (24 h) and pharmacological inhibition of PKG1 by DT-3 significantly promoted adhesion mediated by α4-, β1-, and α5β1-integrins to fibronectin, laminin, and tenacin and also resulted in increased cell migration. Likewise, inhibition of PKG by expression of a dominant-negative PKG1α construct increased cell adhesion and migration, comparable to that induced by hypoxia. Dynamic actin reorganization associated with integrin-mediated cell adhesion is partly regulated by the actin-binding protein cofilin, the (Ser3) phosphorylation of which inhibits its actin-severing activity. We found that increased PKG expression and activity is associated with decreased cofilin (Ser3) phosphorylation, implying a role for PKG in the modulation of cofilin activity and actin dynamics. Together, these findings identify cGMP/PKG1 signaling as central to the functional differences between PVSMC exposed to normoxia versus hypoxia.


2001 ◽  
Vol 153 (4) ◽  
pp. 835-850 ◽  
Author(s):  
Laurent Gagnoux-Palacios ◽  
Maryline Allegra ◽  
Flavia Spirito ◽  
Olivier Pommeret ◽  
Christine Romero ◽  
...  

Laminin 5 is a basement membrane component that actively promotes adhesion and migration of epithelial cells. Laminin 5 undergoes extracellular proteolysis of the γ2 chain that removes the NH2-terminal short arm of the polypeptide and reduces the size of laminin 5 from 440 to 400 kD. The functional consequence of this event remains obscure, although lines of evidence indicate that cleavage of the γ2 chain potently stimulated scattering and migration of keratinocytes and cancer cells. To define the biological role of the γ2 chain short arm, we expressed mutated γ2 cDNAs into immortalized γ2-null keratinocytes. By immunofluorescence and immunohistochemical studies, cell detachment, and adhesion assays, we found that the γ2 short arm drives deposition of laminin 5 into the extracellular matrix (ECM) and sustains cell adhesion. Our results demonstrate that the unprocessed 440-kD form of laminin 5 is a biologically active adhesion ligand, and that the γ2 globular domain IV is involved in intermolecular interactions that mediate integration of laminin 5 in the ECM and cell attachment.


1997 ◽  
Vol 110 (23) ◽  
pp. 2895-2904 ◽  
Author(s):  
C. Brakebusch ◽  
E. Hirsch ◽  
A. Potocnik ◽  
R. Fassler

Integrins are heterodimeric cell adhesion proteins connecting the extracellular matrix to the cytoskeleton and transmitting signals in both directions. These integrins are suggested to be involved in many different biological processes such as growth, differentiation, migration, and cell death. Of more than 20 known integrins, 10 contain the nearly ubiquitously expressed beta1 integrin subunit. Disruption of the beta1 integrin gene by homologous recombination allows us to assess the supposed functions of beta1 containing integrins in vivo in a new way. This review will present and discuss recent findings derived from such studies concerning the biological roles of beta1 integrins in early development, differentiation and migration, hematopoiesis, tumorigenesis, and supramolecular assembly of extracellular matrix proteins. While several former results were confirmed, others were contradicted and new functions found, significantly changing the previous view of beta1 integrin function in vivo.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 349
Author(s):  
Nausika Betriu ◽  
Juan Bertran-Mas ◽  
Anna Andreeva ◽  
Carlos E. Semino

Pancreatic Ductal Adenocarcinoma (PDAC) is a fatal disease with poor prognosis because patients rarely express symptoms in initial stages, which prevents early detection and diagnosis. Syndecans, a subfamily of proteoglycans, are involved in many physiological processes including cell proliferation, adhesion, and migration. Syndecans are physiologically found in many cell types and their interactions with other macromolecules enhance many pathways. In particular, extracellular matrix components, growth factors, and integrins collect the majority of syndecans associations acting as biochemical, physical, and mechanical transducers. Syndecans are transmembrane glycoproteins, but occasionally their extracellular domain can be released from the cell surface by the action of matrix metalloproteinases, converting them into soluble molecules that are capable of binding distant molecules such as extracellular matrix (ECM) components, growth factor receptors, and integrins from other cells. In this review, we explore the role of syndecans in tumorigenesis as well as their potential as therapeutic targets. Finally, this work reviews the contribution of syndecan-1 and syndecan-2 in PDAC progression and illustrates its potential to be targeted in future treatments for this devastating disease.


1988 ◽  
Vol 7 (3) ◽  
pp. 293-301 ◽  
Author(s):  
J. D. Cameron ◽  
S. T. Hagen ◽  
R. R. Waterfield ◽  
L. T. Furcht

Sign in / Sign up

Export Citation Format

Share Document