Continued DNA synthesis after a mitotic block in the double mutant cut1 cdc11 of the fission yeast Schizosaccharomyces pombe

1990 ◽  
Vol 96 (3) ◽  
pp. 435-438
Author(s):  
J. Creanor ◽  
J.M. Mitchison

DNA synthesis is normally dependent on a cell having previously gone through mitosis. Hirano et al. (1986), however, found that DNA synthesis continued at the restrictive temperature in the double mutant cut1 cdc11 of Schizosaccharomyces pombe even though mitosis was blocked in some of the cells. We have confirmed this result with bulk DNA assays of asynchronous cultures. Synchronous cultures of a diploid double mutant at the restrictive temperature showed two peaks of incorporation with an interval between them that was approximately the same as the doubling time in cell length. Flow cytometry showed that the cells had increased their DNA content from 4C (the diploid value) to about 16C after 7h. The cytological appearance at this time was mixed, with uninucleate, binucleate and dead cells, but fluorescence measurements on single cells indicated that about half the population had single nuclei with about the 16C value and had therefore gone through two rounds of DNA synthesis without mitosis.

1982 ◽  
Vol 28 (2) ◽  
pp. 261-264 ◽  
Author(s):  
Stephen M. King ◽  
Jeremy S. Hyams

When cultures of Schizosaccharomyces pombe cdc 2.33 were shifted to 25 °C, after 5 h at the restrictive temperature of 35 °C, cells entered cycles of synchronous division as judged by the appearance of peaks in the cell plate index at 1.5, 3, and 4.75 h. The timing and ultrastructural morphology of events occurring in such synchronous cultures were examined. Most cells underwent mitosis between 10 and 50 min after the temperature shift, with a maximal value after approximately 30 min. The ultrastructure of mitosis was consistent with previous descriptions of this process in wild-type cells.


1980 ◽  
Vol 46 (1) ◽  
pp. 399-431
Author(s):  
T. Benitez ◽  
P. Nurse ◽  
J.M. Mitchison

The induction potentials of 2 enzymes, sucrase and arginase, have been measured in asynchronous and synchronous cultures of the fission yeast Schizosaccharomyces pombe. The effect on potential of inhibiting DNA synthesis is asynchronous cultures has been studied using 2 temperature-sensitive dcd mutants, one blocked in DNA replication and the other blocked in mitosis. The results show that despite inhibition of DNA synthesis, sucrase and arginase potential both continue to increase exponentially for at least a generation of growth after shifting the cdc mutants from the permissive to the restrictive temperature. A second method of inhibiting DNA synthesis, using deoxyadenosine, has also been tested. Cells treated with deoxyadenosine stop the increase in potential for a short period. However, experiments carried out using a cdc mutant together with deoxyadenosine show that the block to the increase in potential is due to a side effect of the inhibitor. It appears that increase in potential is not dependent upon continued DNA replication, and that gene dosage does not control potential in the normal cell cycle. This conclusion is supported by measurements on mutants of different cell sizes. potential is proportional to size (protein content per cell is asynchronous culture) and not to DNA content. Although potential is not gene limited in normal cells, it does appear to be so in the abnormally large cells produced by a cdc block. If cdc mutants of different sizes are grown asynchronously, and DNA synthesis is inhibited by a shift to the restrictive temperature, there is no increase in potential. This critical ratio is different for the 2 enzymes, but for each enzyme it is similar in all the mutants tested. When large cells (produced by a mutant block for 4.5 h) are shifted down in temperature, there are synchronous rounds of DNA synthesis and division and also step doublings in potential. In synchronous cultures of wild type cells, both enzymes show a stepwise doubling of potential at 0.2 of a cycle after DNA replication. In synchronous cultures of cdc mutants blocked either in replication or in mitosis, the potential steps continue with the normal timing observed in wild type cells. This shows that the steps are not dependent on the events of the DNA-division cycle but are controlled by another mechanism. Attainment of a critical size might be part of this mechanism, but tests with size mutants argue against this.


1986 ◽  
Vol 86 (1) ◽  
pp. 191-206
Author(s):  
B. Novak ◽  
J.M. Mitchison

CO2 production has been followed by manometry in synchronous and asynchronous cultures of Schizosaccharomyces pombe prepared by elutriation from the same initial culture. The rate of production follows a linear pattern in synchronous cultures with a rate change once per cycle at the time of cell division. This pattern is most clearly shown in oscillations of the difference between values of the second differential (acceleration) for the synchronous and asynchronous cultures. The association between the rate change and the time of division is maintained during growth speeded up in rich medium and slowed down in poor medium and at lower temperature. It is also maintained after a shift-up in temperature. Results with wee mutants suggest that the association is with the S period rather than division itself. The rate and acceleration of CO2 production are approximately proportional to cell size (protein content) in asynchronous cultures. When synchronous cultures of the temperature-sensitive mutants cdc2.33 and cdc2.33 wee1.6 are shifted up to the restrictive temperature, the DNA-division cycle is blocked. The oscillatory pattern of CO2 production, however, continues for one to two cycles until the acceleration reaches a constant value, after which the oscillations are undetectable. This point is reached later in the double mutant and there is a phase difference in the oscillations compared to those in the single mutant. With both blocked mutants the ‘free-running’ oscillations are about 15% shorter than the normal cycle time. There are well-known examples of such oscillations in eggs but they are rare in growing systems.


1985 ◽  
Vol 75 (1) ◽  
pp. 357-376 ◽  
Author(s):  
J.M. Mitchison ◽  
P. Nurse

The cylindrical cells of Schizosaccharomyces pombe grow in length by extension at the ends and not the middle. At the beginning of the cell cycle, growth is restricted to the ‘old end’, which existed in the previous cycle. Later on, the ‘new end’, formed from the septum, starts to grow at a point in the cycle that we have called NETO (‘new end take-off’). Fluorescence microscopy on cells stained with Calcofluor has been used to study NETO in size mutants, in blocked cdc mutants and with different growth temperatures and media. In wild-type cells (strain 972) NETO happens at 0.34 of the cycle with a cell length of 9.5 microns. With size mutants that are smaller at division, NETO takes place at the same size (9.0-9.5 microns) but this is not achieved until later in the cycle. Another control operates in larger size mutants since NETO occurs at the same stage of the cycle (about 0.32) as in wild type but at a larger cell size. This control is probably a requirement to have completed an event in early G2, since most cdc mutant cells blocked before this point in the cycle do not show NETO whereas most of those blocked in late G2 do show it. We conclude that NETO only happens if: (1) the cell length is greater than a critical value of 9.0-9.5 microns; and (2) the cell has traversed the first 0.3-0.35 of the cycle and passed early G2. NETO is delayed in poor media, in which cell size is also reduced. Temperature has little effect on NETO under steady-state conditions, but there is a transient delay for some hours after a temperature shift. NETO is later in another wild-type strain, 132. Time-lapse photomicrography was used to follow the rates of length growth in single cells. Wild-type cells showed two linear segments during the first 75% of the cycle. There was a rate-change point (RCP), coincident with NETO, where the rate of total length extension increased by 35%. This increase was not due simply to the start of new-end growth, since old-end growth slowed down in some cells at the RCP. cdc 11.123 is a mutant in which septation and division is blocked at 35 degrees C but nuclear division continues.(ABSTRACT TRUNCATED AT 400 WORDS)


1978 ◽  
Vol 33 (1) ◽  
pp. 399-411
Author(s):  
J. Creanor

Oxygen uptake was measured in synchronous cultures of the fission yeast Schizosaccharomyces pombe. The rate of oxygen uptake was found to increase in a step-wise manner at the beginning of the cycle and again in the middle of the cycle. The increases in rate were such that overall, oxygen uptake doubled in rate once per cell cycle. Addition of inhibitors of DNA synthesis or nuclear division to a synchronous culture did not affect the uptake of oxygen. In an induced synchronous culture, in which DNA synthesis, cell division, and nuclear division, but not ‘growth’ were synchronized, oxygen uptake increased continuously in rate and did not show the step-wise rises which were shown in the selection-synchronized culture. These results were compared with previous measurements of oxygen uptake in yeast and an explanation is suggested for the many different patterns which have been reported.


1970 ◽  
Vol 7 (2) ◽  
pp. 523-530
Author(s):  
C. J. BOSTOCK

The effect of different concentrations of 2-phenyl ethanol (PE) on growth and DNA synthesis of Schizosaccharomyces pombe is described. o.3% PE inhibits the entry of cells into S phase, but allows a doubling in the number of cells in the culture. The effect of o.2% PE on random and synchronous cultures of S. pombe shows that, in the continued presence of the inhibitor, the S phase is moved to a different point in the cell cycle. Cells continue to grow in the presence of o.2% PE with a G1 phase occupying a significant portion of the cell cycle. This differs from normal growth when the G1 phase is absent.


1976 ◽  
Vol 21 (3) ◽  
pp. 497-521
Author(s):  
R.S. Fraser ◽  
F. Moreno

The rates of polyadenylated messenger RNA and ribosomal RNA synthesis were measured in synchronously dividing cultures of fission yeast (Schizosaccharomyces pombe). Control asynchronous cultures, which had been exposed to the conditions used for preparing synchronous cultures, were investigated to check for effects of the synchronization procedure itself on RNA synthesis. After each period of DNA synthesis in synchronous culture, the rates of messenger and ribosomal RNA synthesis doubled, suggesting that gene number controls the rate of messenger and ribosomal RNA synthesis. This was confirmed by experiments with asynchronous, exponential-phase cultures in which DNA synthesis was inhibited by hydroxyurea. Both synchronous culture and hydroxyurea experiments suggested that there is a delay of 15 min (0-1 of the cell generation time) between replication of the DNA and transcription of both gene copies. A pattern of protein accumulation was calculated from changes in the rate of polyadenylated messenger RNA synthesis during synchronous culture. The simulated pattern indicates that protein is accumulated linearly, with a doubling in the rate of accumulation once per cell cycle. The simulated pattern of protein accumulation is very similar to measurements previously reported by other workers of changes in activities of 3 enzymes in synchronous cultures. It is suggested that the doubling of the rate of messenger RNA synthesis, as a consequence of the replication of the DNA once per cycle, provides the basis of a mechanism for control of the doubling of other cellular constituents during the cell cycle.


1984 ◽  
Vol 69 (1) ◽  
pp. 199-210
Author(s):  
J. Creanor ◽  
J.M. Mitchison

The rate of protein synthesis has been measured with pulse labels of [3H]tryptophan in synchronous and asynchronous cultures of cdc mutants of Schizosaccharomyces pombe shifted up to the restrictive temperature. The cell cycle related fluctuations in rate that occur in normal synchronous cultures vanish when nuclear division is blocked in synchronous cultures of cdc2 and cdc10. But they persist in cdc11 where nuclear division continues and cleavage is stopped. We conclude that nuclear division affects the rate of synthesis and that this effect is inhibitory and probably persists for the last 40% of the cycle. When nuclear division has been blocked, the rate of synthesis continues to increase until a plateau is reached where the rate remains constant. Three size mutants of cdc2 reach the plateau at the same average protein content per cell although their initial protein contents vary over a threefold range. Comparison of these results with those from cdc10 leads to the tentative conclusion that the plateau starts when the cells reach a critical protein/DNA ratio.


1977 ◽  
Vol 162 (1) ◽  
pp. 39-46 ◽  
Author(s):  
S W Edwards ◽  
D Lloyd

1. Changes in activity of ATPase (adenosine triphosphatase) during the cell cycle of Schizosaccharomyces pombe were analysed in cell-free extracts of cells harvested from different stages of growth of synchronous cultures and also after cell-cycle fractionation. 2. Oligomycin-sensitive ATPase oscillates in both glucose-repressed synchronous cultures and shows four maxima of activity approximately equally spaced through the cell cycle. The amplitude of the oscillations accounts for between 13 and 80% of the total activity at different times in the cell cycle. 3. Oligomycin sensitivity varies over a fourfold range at different stages of the cell cycle. 4. The periodicity of maximum oligomycin sensitivity is one-quarter of a cell cycle. 5. These results were confirmed for the first three-quarters of the cell cycle by cell-cycle fractionation. 6. In cells growing synchronously with glycerol, ATPase activity increases in a stepwise pattern, with two steps per cell cycle; the first of these occurs at 0.54 of the cell cycle and the second at 0.95. 7. These results are discussed in relation to previously obtained data on the development of mitochondrial activities during the cell cycle.


1978 ◽  
Vol 33 (1) ◽  
pp. 385-397
Author(s):  
J. Creanor

The rate of CO2 evolution was measured in synchronous cultures of the fission yeast Schizosaccharomyces pombe growing in a minimal medium. The rate of CO2 evolution was found to double sharply at about the time of nuclear division (0.75 of the way through the cell cycle). For the remainder of the cell cycle the rate remained constant. Addition of inhibitors of DNA synthesis or nuclear division did not affect the pattern of CO2 evolution in synchronous cultures. Similarly, in an induced synchronous culture, in which DNA synthesis, nuclear division and cell division—but not growth, were synchronized, CO2 evolution showed a continuous pattern and not the step-wise increase associated with the normal synchronous cultures. When S. pombe was grown in a complete medium, the evolution of CO2 in a synchronous cultures was shown to increase in a continuous manner but at a rate faster than the growth of the culture.


Sign in / Sign up

Export Citation Format

Share Document