scholarly journals Electron Microscopy of the Development of Tracheoles in Drosophila Melanogaster

1963 ◽  
Vol s3-104 (65) ◽  
pp. 135-140
Author(s):  
S. AHMAD SHAFIQ

The tracheoblasts associated with the flight-muscles of Drosophila were studied by electron microscopy. During the developmental stages the cytoplasm of such tracheoblasts shows extensive membrane structures arranged in whorls. It seems that these membranes become aligned in pairs, spread out in tracheoblast cytoplasm, and form the walls of the new tracheolar vessels. The membranous whorls appear to have no obvious relationship with the usual endoplasmic reticulum, Golgi apparatus or plasma membranes. They are probably produced from certain large granules distributed irregularly in the cytoplasm of the young tracheoblasts. Membranes limiting the tracheoles from the tracheoblast cytoplasm (the so-called mestracheons) are not usually seen in the younger stages. They are sometimes seen after the cuticular lining of the tracheoles has been formed.

1985 ◽  
Vol 225 (1) ◽  
pp. 51-58 ◽  
Author(s):  
T Saermark ◽  
N Flint ◽  
W H Evans

Endosome fractions were isolated from rat liver homogenates on the basis of the subcellular distribution of circulating ligands, e.g. 125I-asialotransferrin internalized by hepatocytes by a receptor-mediated process. The distribution of endocytosed 125I-asialotransferrin 1-2 min and 15 min after uptake by liver and a monensin-activated Mg2+-dependent ATPase activity coincided on linear gradients of sucrose and Nycodenz. The monensin-activated Mg2+-ATPase was enriched relative to the liver homogenates up to 60-fold in specific activity in the endosome fractions. Contamination of the endosome fractions by lysosomes, endoplasmic reticulum, mitochondria, plasma membranes and Golgi-apparatus components was low. By use of 9-aminoacridine, a probe for pH gradients, the endosome vesicles were shown to acidify on addition of ATP. Acidification was reversed by addition of monensin. The results indicate that endosome fractions contain an ATP-driven proton pump. The ionophore-activated Mg2+-ATPase in combination with the presence of undegraded ligands in the endosome fractions emerge as linked markers for this new subcellular organelle.


1974 ◽  
Vol 60 (1) ◽  
pp. 92-127 ◽  
Author(s):  
Melvyn Weinstock ◽  
C. P. Leblond

The elaboration of dentin collagen precursors by the odontoblasts in the incisor teeth of 30–40-g rats was investigated by electron microscopy, histochemistry, and radioautography after intravenous injection of tritium-labeled proline. At 2 min after injection, when the labeling of blood proline was high, radioactivity was restricted to the rough endoplasmic reticulum, indicating that it is the site of synthesis of the polypeptide precursors of collagen, the pro-alpha chains. At 10 min, when the labeling of blood proline had already declined, radioactivity was observed in spherical portions of Golgi saccules containing entangled threads, and, at 20 min, radioactivity appeared in cylindrical portions containing aggregates of parallel threads. The parallel threads measured 280–350 nm in length and stained with the low pH-phosphotungstic acid technique for carbohydrate and with the silver methenamine technique for aldehydes (as did extracellular collagen fibrils). The passage of label from spherical to cylindrical Golgi portions is associated with the reorganization of entangled into parallel threads, which is interpreted as the packing of procollagen molecules. Between 20 and 30 min, prosecretory and secretory granules respectively became labeled. These results indicate that the cylindrical portions of Golgi saccules transform into prosecretory and subsequently into secretory granules. Within these granules, the parallel threads, believed to be procollagen molecules, are transported to the odontoblast process. At 90 min and 4 h after injection, label was present in predentin, indicating that the labeled content of secretory granules had been released into predentin. This occurred by exocytosis as evidenced by the presence of secretory granules in fusion with the plasmalemma of the odontoblast process. It is proposed that pro-alpha chains give rise to procollagen molecules which assemble into parallel aggregates in the Golgi apparatus. Procollagen molecules are then transported within secretory granules to the odontoblast process and released by exocytosis. In predentin procollagen molecules would give rise to tropocollagen molecules, which would then polymerize into collagen fibrils.


1977 ◽  
Vol 168 (2) ◽  
pp. 187-194 ◽  
Author(s):  
D Thom ◽  
A J Powell ◽  
C W Lloyd ◽  
D A Rees

1. A method was developed which allows the rapid preparation of pure plasma membranes in high yield from cultured fibroblasts. 2. Cells are lysed in hypo-osmotic borate/EDTA and, after differential centrifugation, the membranes collected by centrifugation on a sucrose barrier. 3. Electron microscopy of the isolated material shows large membrane vesicles essentially free from contaminating organelles. 4. There is no detectable activity of the endoplasmic-reticulum enzyme marker, NADH2—lipoamide oxidoreductase (EC 1.6.4.3), and that of succinate dehydrogenase (EC 1.3.99.1), a marker for mitochondria, is substantially decreased. Chemical compositions are in good agreement with previous observations. 5. This study confirms the usefulness of applied isotopic markers for isolating plasma membranes.


1988 ◽  
Vol 46 (1) ◽  
pp. 3-5
Author(s):  
Claudio A. Ferraz de Carvalho ◽  
Ciro F. da Silva

Clear and dark satellite cell classes were identified by electron microscopy in the lumbar sensory ganglia of domestic fowl in 8 pre and 4 post-hatching stages of development. Some cytologic differences found between the two classes relating to the rough-endoplasmic reticulum, ribosomes, Golgi apparatus and junctional complexes suggest the existence of distinct functional features for both types of satellite cells.


1978 ◽  
Vol 33 (1-2) ◽  
pp. 65-69 ◽  
Author(s):  
C. Postius ◽  
H. Kindi

Abstract 1. The time course of activity of soluble and microsomal phenylalanine ammonia-lyase (PAL) was studied in dark grown cell cultures of soybean (Glycine max). A distinct activity increase of PAL in the soluble and microsomal fraction occurred prior to the stationary phase of the cell culture. Cinnamic acid p-hydroxylase and NADH : cytochrome c reductase, too, exhibited maximal activity in the log phase, 5 days after the transfer of soybean cells to fresh culture medium.2. Upon subfractionation of the once washed microsomal fraction by sedimentation velocity centrifugation on a sucrose gradient, membranes of the endoplasmic reticulum could be separated from fractions containing mainly membranes from the Golgi apparatus or plasma membranes, respectively. PAL and cinnamic acid p-hydroxylase were found in fractions of endoplasmic reticulum whereas no activity of either enzymes could be detected in fractions containing Golgi apparatus or plasma membranes.3. Repeated washing of microsomal fractions led to a residual membrane-bound PAL representing about 1% of the total PAL activity of the cells. This residual membrane-bound activity could be solubilized almost completely by Triton X-100 or digitonin at concentrations of 0.5 - 5%.


1985 ◽  
Vol 101 (5) ◽  
pp. 1733-1740 ◽  
Author(s):  
A Yamamoto ◽  
R Masaki ◽  
Y Tashiro

The Golgi apparatus mediates intracellular transport of not only secretory and lysosomal proteins but also membrane proteins. As a typical marker membrane protein for endoplasmic reticulum (ER) of rat hepatocytes, we have selected phenobarbital (PB)-inducible cytochrome P-450 (P-450[PB]) and investigated whether P-450(PB) is transported to the Golgi apparatus or not by combining biochemical and quantitative ferritin immunoelectron microscopic techniques. We found that P-450(PB) was not detectable on the membrane of Golgi cisternae either when P-450 was maximally induced by phenobarbital treatment or when P-450 content in the microsomes rapidly decreased after cessation of the treatment. The P-450 detected biochemically in the Golgi subcellular fraction can be explained by the contamination of the microsomal vesicles derived from fragmented ER membranes to the Golgi fraction. We conclude that when the transfer vesicles are formed by budding on the transitional elements of ER, P-450 is completely excluded from such regions and is not transported to the Golgi apparatus, and only the membrane proteins destined for the Golgi apparatus, plasma membranes, or lysosomes are selectively collected and transported.


1978 ◽  
Vol 78 (2) ◽  
pp. 503-519 ◽  
Author(s):  
S Matsuura ◽  
Y Fujii-Kuriyama ◽  
Y Tashiro

Localization of cytochrome P-450 on various membrane fractions of rat liver cells was studied by direct immunoelectron microscopy using ferritin-conjugated antibody to the cytochrome. The outer surfaces of almost all the microsomal vesicles were labeled with ferritin particles. The distribution of the particles on each microsomal vesicle was usually heterogeneous, indicating clustering of the cytochrome, and phenobarbital treatment markedly increased the labeled regions of the microsomal membranes. The outer nuclear envelopes were also labeled with ferritin particles, while on the surface of other membrane structures such as Golgi complexes, outer mitochondrial membranes and plasma membranes the labeling was scanty and at the control level. The present observation indicates that cytochrome P-450 molecules are localized exclusively on endoplasmic reticulum membranes and outer nuclear envelopes where they are probably distributed not uniformly but heterogeneously, forming clusters or patches. The physiological significance of such microheterogeneity in the distribution of the cytochrome on endoplasmic reticulum membranes is discussed.


1990 ◽  
Vol 68 (7) ◽  
pp. 1454-1467 ◽  
Author(s):  
K. M. Fry ◽  
S. B. McIver

Light and electron microscopy were used to observe development of the lateral palatal brush in Aedes aegypti (L.) larvae. Development was sampled at 4-h intervals from second- to third-instar ecdyses. Immediately after second-instar ecdysis, the epidermis apolyses from newly deposited cuticle in the lateral palatal pennicular area to form an extensive extracellular cavity into which the fourth-instar lateral palatal brush filaments grow as cytoplasmic extensions. On reaching their final length, the filaments deposit cuticulin, inner epicuticle, and procuticle sequentially on their outer surfaces. The lateral palatal crossbars, on which the lateral palatal brush filaments insert, form after filament development is complete. At the beginning of development, the organelles involved in plasma membrane and cuticle production are located at the base and middle of the cells. As the filament rudiments grow, most rough endoplasmic reticulum, mitochondria, and Golgi apparatus move to the apex of the epidermal cells and into the filament rudiments. After formation of the lateral palatal brush filaments and lateral palatal crossbars, extensive organelle breakdown occurs. Lateral palatal brush formation is unusual in that no digestion and resorption of old endocuticle occurs prior to deposition of new cuticle. No mucopolysaccharide secretion by the lateral palatal brush epidermis was observed, nor were muscle fibres observed to attach to the lateral palatal crossbars, as has been suggested by other workers.


1983 ◽  
Vol 31 (6) ◽  
pp. 755-764 ◽  
Author(s):  
P Liesi

Laminin was localized in cultured mouse C1300 neuroblastoma cells by applying the peroxidase-antiperoxidase technique in preembedding electron microscopy. The results were compared to those obtained by indirect immunofluorescence and by the colloidal gold second antibody method on Epon-embedded ultrathin sections. Laminin was found in the cell membranes and within the rough endoplasmic reticulum as well as in intracytoplasmic vacuoles. Plasma membranes of the neuroblastoma cells showed a patchy localization of laminin that was apparently involved in cell-to-substrate attachment and in gap junction-like intercellular connections. Under normal conditions, the Golgi cisternae contained no laminin. Pretreatment of cells with micromolar concentrations of monensin, however, lead to an accumulation of laminin within the Golgi cisternae. These results support a role for laminin as an adhesion protein in cultured neuroblastoma cells and indicate that laminin is transported through the Golgi complex.


1965 ◽  
Vol 26 (2) ◽  
pp. 523-537 ◽  
Author(s):  
G. Benjamin Bouck

The structural interrelationships among several membrane systems in the cells of brown algae have been examined by electron microscopy. In the brown algae the chloroplasts are surrounded by two envelopes, the outer of which in some cases is continuous with the nuclear envelope. The pyrenoid, when present, protrudes from the chloroplast, is also surrounded by the two chloroplast envelopes, and, in addition, is capped by a third dilated envelope or "pyrenoid sac." The regular apposition of the membranes around the pyrenoid contrasts with their looser appearance over the remainder of the chloroplast. The Golgi apparatus is closely associated with the nuclear envelope in all brown algae examined, but in the Fucales this association may extend to portions of the cytoplasmic endoplasmic reticulum as well. Evidence is presented for the derivation of vesicles, characteristic of those found in the formative region of the Golgi apparatus, from portions of the underlying nuclear envelope. The possibility that a structural channeling system for carbohydrate reserves and secretory precursors may be present in brown algae is considered. Other features of the brown algal cell, such as crystal-containing bodies, the variety of darkly staining vacuoles, centrioles, and mitochondria, are examined briefly, and compared with similar structures in other plant cells.


Sign in / Sign up

Export Citation Format

Share Document