Pulmonary Mechanics and the Work of Breathing in the Lizard, Gekko Gecko
Measurements of pulmonary mechanics made on anaesthetized specimens of the Tokay gecko Gekkogecko (Linné), indicate that both static and dynamic pulmonary mechanics are dominated by the mechanics of the body cavity and chest wall. The lungs are relatively large and compliant and offer little resistance to air flow at any of the ventilation frequencies (f) used in this study. The body wall is relatively stiff and becomes less compliant with increasing ventilation frequency and with increasing tidal volume (VT) at the higher frequencies. The vast majority of the work performed in breathing is used to overcome elastic forces in the chest wall resisting lung inflation. This work increases exponentially with increases in volume. As a consequence, in terms of total ventilation, the most economic breathing pattern is a high frequency, low tidal volume pattern in which changes in minute ventilation (VE) are most economically produced solely by changes in f. Because reductions in tidal volume drastically reduce alveolar ventilation volume while dead space remains constant, the same arguments do not apply to alveolar minute ventilation (VA). In terms of alveolar minute ventilation, there is an optimum combination of f and VT for each level of VA, with changes in VA being most economically produced by almost equal changes in both f and VT