scholarly journals Innervation patterns of inhibitory motor neurones in the thorax of the locust

1985 ◽  
Vol 117 (1) ◽  
pp. 401-413 ◽  
Author(s):  
J. P. Hale ◽  
M. Burrows

The innervation pattern of inhibitory motor neurones of the locust has been revealed by intracellular recording from their cell bodies in the meso- and metathoracic ganglion and simultaneous recording from muscle fibres in a middle, or in a hind leg. Three neurones in each ganglion, the common inhibitor (CI = CI1), the anterior inhibitor (AI = CI2), and the posterior inhibitor (PI = CI3) innervate several muscles in one leg and are thus common inhibitory neurones. Metathoracic CI innervates 13 muscles in one hind leg and mesothoracic CI innervates 12 muscles in one middle leg. The muscles are all in the proximal parts of the legs and move the coxa, the trochanter and the tibia. Metathoracic AI and PI innervate four muscles in the more distal parts of one hind leg that move the tibia, the tarsus and the unguis. None of these muscles is innervated by CI. Each inhibitor innervates muscles that have different and often antagonistic actions during movements of a leg. AI and PI receive many synaptic inputs in common and show similar patterns of spikes during imposed movements of a tibia. Tests fail, however, to reveal evidence for any electrical or synaptic coupling between them. A revised scheme of nomenclature for these inhibitory neurones is proposed.

1998 ◽  
Vol 201 (12) ◽  
pp. 1885-1893 ◽  
Author(s):  
K Sasaki ◽  
M Burrows

The flexor tibiae muscle of a locust hind leg consists of 10-11 pairs of fibre bundles in the main body of the muscle and a distal pair of bundles that form the accessory flexor muscle, all of which insert onto a common tendon. It is much smaller than the antagonistic extensor tibiae muscle and yet it is innervated by nine excitatory motor neurons, compared with only two for the extensor. To determine the pattern of innervation within the muscle by individual motor neurons, branches of the nerve (N5B2) that supplies the different muscle bundles were backfilled to reveal somata in the metathoracic ganglion. This showed that different muscle bundles are innervated by different numbers of excitatory motor neurons. Physiological mapping of the innervation was then carried out by intracellular recordings from the somata of flexor motor neurons in the metathoracic ganglion using microelectrodes. Spikes were evoked in these neurons by the injection of current, and matching junctional potentials were sought in fibres throughout the muscle using a second intracellular electrode. Each motor neuron innervates only a restricted array of muscle fibres and, although some innervate a larger array than others, none innervates fibres throughout the muscle. Some motor neurons innervate only proximal fibres and others only more distal fibres, so that the most proximal and most distal bundles of muscle fibres are innervated by non-overlapping sets of motor neurons. More motor neurons innervate proximal bundles than distal ones, and there are some asymmetries in the number of motor neurons innervating corresponding bundles on either side of the tendon. Individual motor neurons cause slow, fast or intermediate movements of the tibia, but their patterns of innervation overlap in the different muscle bundles. Furthermore, individual muscle fibres may also be innervated by motor neurons with different properties.


1995 ◽  
Vol 198 (2) ◽  
pp. 507-520 ◽  
Author(s):  
E Kalogianni ◽  
G Theophilidis

The oviducts of the female Decticus albifrons (Orthoptera: Tettigonidae) are innervated by six bilaterally paired neurones, while those of the female Calliptamus sp. (Orthoptera: Catantopidae) are innervated by three bilaterally paired neurones, located in the seventh abdominal ganglion. Using intracellular recording and staining, five of the six oviductal neurones of D. albifrons and the three oviductal neurones of Calliptamus sp. were physiologically and morphologically identified. All three oviductal neurones of Calliptamus sp. have a motor function. In D. albifrons, however, there is evidence for motor function in only three of the five identified oviductal neurones that appear to participate in the generation of the oviductal contractions. The remaining two identified neurones of D. albifrons have a branching pattern similar to that of motor neurones, but their physiological characteristics, large overshooting soma action potentials (30­40 mV) with a long afterhyperpolarising phase, are similar to those of the oviductal unpaired median neurones, which are known to modulate the oviductal contractions. The oviductal muscle exhibits two different modes of contractions: (a) fast and slow myogenic contractions, the fast contractions being produced by spontaneous potentials (30­40 mV) generated by some oviductal muscle fibres; and (b) neurogenic contractions caused by the rhythmic spiking of the oviductal motor neurones. This motor pattern is produced by the oviductal central pattern generator, a neural network residing in the last two abdominal ganglia (seventh and terminal abdominal ganglia) of the species examined here. When isolated both anteriorly and posteriorly, the seventh abdominal ganglion generates rhythmic oviductal contractions of lower frequency and amplitude than those recorded when the connectives between the genital ganglia are intact. The oviductal pattern generator is activated through release from descending inhibition, which originates, in Calliptamus sp., from the compound metathoracic ganglion (fused metathoracic and first three abdominal neuromeres) and in, D. albifrons, from the first free abdominal ganglion (fused second and third abdominal neuromeres).


1982 ◽  
Vol 97 (1) ◽  
pp. 385-400
Author(s):  
MALCOLM BURROWS

A pair of interneurones has been identified by intracellular recording and staining which co-ordinates the movements of the thoracic spiracles in the ventilatory rhythm. An interneurone has its cell body on the left or on the right side of the metathoracic ganglion and an axon which ascends to the other thoracic ganglia in the contralateral connective. Each interneurone produces bursts of spikes in time with the inspiratory phase of ventilation. These spikes evoke inhibitory post-synaptic potentials (IPSPs) in thoracic spiracular closer motor neurones. Both interneurones synapse upon the closer motor neurones in each thoracic segment. These connexions, which may be direct, inhibit the spiking of the closer motor neurones during inspiration. The interneurones do not appear to have an innate rhythmicity but instead receive a periodic synaptic input which inhibits their spikes during expiration. The underlying cause of the spikes is less clear. Apart from brief periods at the start and end of a burst, the spikes occur at a constant frequency that is independent of the ventilatory rate. The pattern of the spiracular motor output could be altered by manipulating the frequency and number of spikes in an interneurone. When the frequency of spikes in the interneurone was raised, the motor bursts had a higher initial frequency and were of briefer duration; when the frequency was lowered, the motor bursts were of lower initial frequency and of longer overall duration. Altering the spikes in one interneurone, however, could not affect the frequency of the ventilatory rhythm, or reset the rhythm.


It was shown in an earlier paper (7) that if maximal stimulation of either of two different afferent nerves can reflexly excite fractions of a given flexor muscle, there are generally, within the aggregate of neurones which innervate that muscle, motoneurones which can be caused to discharge by either afferent (i. e., motoneurones common to both fractions). The relationship which two such afferents bear to a common motoneurone was shown, by the isometric method of recording contraction, to be such that the activation of one afferent, at a speed sufficient to cause a maximal motor tetanus when trans­mitted to the muscle fibres, caused exclusion of any added mechanical effect when the other afferent was excited concurrently. This default in mechanical effect was called “occlusion.” Occlusion may conceivably be due to total exclusion of the effect of one afferent pathway on the common motoneurone by the activity of the other; but facilitation of the effect of one path by the activation of the other when the stimuli were minimal suggests that, in some circumstances at least, the effect of each could augment and summate with th at of the other at the place of convergence of two afferent pathways. Further investigation, using the action currents of the muscle as indication of the nerve impulses discharged by the motoneurone units, has now given some information regarding the effect of impulses arriving at the locus of convergence by one afferent path when the unit common to both is already discharging in response to impulses arriving by the other afferent path. Our method has been to excite both afferent nerves in overlapping sequence by series of break shocks at a rapid rate and to examine the action currents of the resulting reflex for evidence of the appearance of the rhythm of the second series in the discharge caused by the first when the two series are both reaching the motoneurone.


1982 ◽  
Vol 96 (1) ◽  
pp. 325-341
Author(s):  
MALCOLM BURROWS

Simultaneous intracellular recordings have been made from the two expiratory, and from the two inspiratory motor neurones which have their axons in the unpaired median nerves of the thoracic ganglia. Each motor neurone has an axon that branches to innervate muscles on the left and on the right side of one segment. The expiratory neurones studied were those in the meso- and meta-thoracic ganglia which innervate spiracular closer muscles. The depolarizing synaptic potentials underlying the spikes during expiration are common to the two closer motor neurones in a particular segment. Similarly, during inspiration when there are usually no spikes, the hyperpolarizing, inhibitory potentials are also common to both motor neurones. The synaptic input to the neurones can be derived from four interneurones; two responsible for the depolarizing potentials during expiration and two for the inhibitory potentials during inspiration. The inspiratory neurones studied were those in the abdominal ganglia fused to the metathoracic ganglion which innervate dorso-ventral abdominal muscles. During inspiration the two motor neurones of one segment spike at a similar and steady frequency. The underlying synaptic input to the two is common. During expiration, when there are usually no spikes, the hyperpolarizing synaptic potentials are also common to both neurones. In addition they match exactly the depolarizing potentials occurring at the same time in the closer motor neurones. The same set of interneurones could be responsible. No evidence has been revealed to indicate that the two closer, or the two inspiratory motor neurones of one segment are directly coupled by electrical or chemical synapses. The morphology of both types of motor neurone is distinct from that of other motor neurones in these ganglia. Both types branch extensively in both the left and in the right areas of the neuropile.


2021 ◽  
Author(s):  
Leonit Kiriaev ◽  
Peter J. Houweling ◽  
Kathryn N. North ◽  
Stewart I. Head

ABSTRACTThe common null polymorphism (R577X) in the ACTN3 gene is present in over 1.5 billion people worldwide and results in the absence of the protein α-actinin-3 from the Z-discs of fast-twitch skeletal muscle fibres. We have previously reported that this polymorphism is a modifier of dystrophin deficient Duchenne Muscular Dystrophy. To investigate the mechanism underlying this we use a double knockout (dk)Actn3KO/mdx (dKO) mouse model which lacks both dystrophin and sarcomere α-actinin-3. We used dKO mice and mdx dystrophic mice at 12 months (aged) to investigate the correlation between morphological changes to the fast-twitch dKO EDL and the reduction in force deficit produced by an in vitro eccentric contraction protocol. In the aged dKO mouse we found a marked reduction in fibre branching complexity that correlated with protection from eccentric contraction induced force deficit. Complex branches in the aged dKO EDL fibres (28%) were substantially reduced compared to aged mdx EDL fibres (68%) and this correlates with a graded force loss over three eccentric contractions for dKO muscles (∼35% after first contraction, ∼66% overall) compared to an abrupt drop in mdx upon the first eccentric contraction (∼73% after first contraction, ∼89% after three contractions). In dKO protection from eccentric contraction damage was linked with a doubling of SERCA1 pump density the EDL. We propose that the increased oxidative metabolism of fast-twitch glycolytic fibres characteristic of the null polymorphism (R577X) and increase in SR Ca2+ pump proteins reduces muscle fibre branching and decreases susceptibility to eccentric injury in the dystrophinopathies.


1980 ◽  
Vol 88 (1) ◽  
pp. 249-258
Author(s):  
CHRISTINE E. PHILLIPS

The anatomical and physiological organization of the locust metathoracic flexor tibiae was examined by a combination of intracellular recording and electron microscopy. Nine excitatory motor neurones, three fast, three intermediate and three slow innervate the muscle; each is uniquely identifiable using a combination of physiological response and soma location. A simple spatial distribution of inputs to the muscle from the individual motor neurones was not found. Individual muscle fibres responded to as many as seven of the motor neurones in various combinations. The muscle fibres are heterogeneous, ranging from slow (tonic) to fast (phasic) in a continuum from predominantly phasic proximally to tonicdistally. This is demonstrated by contraction and relaxation rates to directand indirect stimulation, as well as contraction elicited by action potentials in a single flexor motor neurone. The fast and slow contractile properties of the muscle fibres are matched by appropriate ultrastructures. Such a high degree of complexity of neuromuscular innervation as that found in the metathoracic flexor tibiae has not previously been described for an arthropod muscle.


Development ◽  
1985 ◽  
Vol 87 (1) ◽  
pp. 13-26
Author(s):  
c. K. Govind ◽  
Philip J. Stephens ◽  
Judith S. Eisen

Motor innervation of the deep extensor muscle in the abdomen of lobsters (Homarus americanus) was compared in adults and embryos using electrophysiological techniques. There is widespread innervation of the adult muscle by the common excitor and inhibitor axons and regionally restricted or private innervation by three more excitor axons. In the embryo the earliest sign of functional innervation revealed a single inhibitory and two to three excitatory axons thus denoting simultaneous innervation by the full complement of axons. In corroboration, serial-section electron microscopy revealed several axon profiles invading the embryonic deep extensor muscles and giving rise to well-defined neuromuscular synapses with presynaptic dense bars. Innervation patterns to homologous regions of the embryonic and adult muscles were similar, consisting of a few large inhibitory synapses and many small excitatory ones. Consequently the adult pattern of polyneuronal innervation occurs simultaneously and in toto during embryonic development.


1999 ◽  
Vol 202 (5) ◽  
pp. 521-528 ◽  
Author(s):  
J.M. Wakeling ◽  
I.A. Johnston

White muscle strains were recorded using sonomicrometry techniques for 70 fast-starts in the common carp Cyprinus carpio L. High-speed cine images were recorded simultaneously for 54 of these starts, and muscle strain was calculated independently from the digitized outlines of the fish. Sonomicrometry measurements of superficial muscle strain were not significantly different from the strain as calculated from the theory of simple bending of a homogeneous material: superficial muscle strain thus varied with chordwise distance from the spine. However, white muscle strain across a transverse section of the myotome shows less variation with chordwise position than would be expected from simple bending theory. Muscle strains measured using sonomicrometry thus do not necessarily represent the more uniform strain predicted for the whole section of the fish. White muscle strain can be accurately predicted from the spine curvatures as measured from the cine images if the gearing ratio between the red and white muscle fibres is known. A model for calculating the gearing ratio from the helical muscle fibre geometry was re-evaluated using current data for the kinematics of fast-starting C. carpio. This model predicted a mean gearing ratio of 2.8 for these fast-starts. A quicker, alternative approach to estimating gearing ratio from the position of the centroid of white fibre area is proposed and results in ratios similar to those calculated from the model of helical geometry. White muscle strains in fish can thus be estimated from measurements of spine curvature and muscle distribution alone.


Sign in / Sign up

Export Citation Format

Share Document