Polyneuronal innervation of an adult and embryonic lobster muscle

Development ◽  
1985 ◽  
Vol 87 (1) ◽  
pp. 13-26
Author(s):  
c. K. Govind ◽  
Philip J. Stephens ◽  
Judith S. Eisen

Motor innervation of the deep extensor muscle in the abdomen of lobsters (Homarus americanus) was compared in adults and embryos using electrophysiological techniques. There is widespread innervation of the adult muscle by the common excitor and inhibitor axons and regionally restricted or private innervation by three more excitor axons. In the embryo the earliest sign of functional innervation revealed a single inhibitory and two to three excitatory axons thus denoting simultaneous innervation by the full complement of axons. In corroboration, serial-section electron microscopy revealed several axon profiles invading the embryonic deep extensor muscles and giving rise to well-defined neuromuscular synapses with presynaptic dense bars. Innervation patterns to homologous regions of the embryonic and adult muscles were similar, consisting of a few large inhibitory synapses and many small excitatory ones. Consequently the adult pattern of polyneuronal innervation occurs simultaneously and in toto during embryonic development.

Genetics ◽  
2003 ◽  
Vol 163 (4) ◽  
pp. 1337-1356 ◽  
Author(s):  
Adelaide T C Carpenter

Abstract The meiotic phenotypes of two mutant alleles of the mei-W68 gene, 1 and L1, were studied by genetics and by serial-section electron microscopy. Despite no or reduced exchange, both mutant alleles have normal synaptonemal complex. However, neither has any early recombination nodules; instead, both exhibit high numbers of very long (up to 2 μm) structures here named “noodles.” These are hypothesized to be formed by the unchecked extension of identical but much shorter structures ephemerally seen in wild type, which may be precursors of early recombination nodules. Although the mei-W68L1 allele is identical to the mei-W681 allele in both the absence of early recombination nodules and a high frequency of noodles (i.e., it is amorphic for the noodle phene), it is hypomorphic in its effects on exchange and late recombination nodules. The differential effects of this allele on early and late recombination nodules are consistent with the hypothesis that Drosophila females have two separate recombination pathways—one for simple gene conversion, the other for exchange.


1989 ◽  
Vol 93 (1) ◽  
pp. 41-52
Author(s):  
I. BRENT HEATH ◽  
SUSAN G.W. KAMINSKYJ

The distribution of organelles and microtubules in hyphal tips of the oomycete, Saprolegnia ferax, were quantitatively determined at high resolution from serial-section electron microscopy of freeze-substituted cells. All the organelles and the microtubules were non-uniformly distributed, each showing a characteristic longitudinal gradient starting at a different point behind the tip. In addition, when the cytoplasmic cross-sectional area was divided into radial regions, all organelles occurred preferentially in either the central (mitochondria and Golgi bodies) or the peripheral (microtubules, wall vesicles and spherical vesicles) region. The nuclei were so large as to span both regions but were always oriented with their centrioles facing the plasmalemma. Microtubules occurred in the extreme tips, became more abundant sub-apically, were predominantly short but increased in mean length with distance from the tip. The correlated patterns of organelle and cytoskeleton organization from this and previous work show that neither the microtubules nor the detected arrays of actin are sufficient to account for most organelle arrangements. However, on the basis of the distribution and orientation of the predominantly elongated wall vesicles, we suggest that the wall vesicles travel radially from their origin at the centrally located Golgi bodies to the cell periphery where they are transported longitudinally to the hyphal tip in conjunction with the plasmalemma-associated actin cables. Our data also suggest that the hyphae contain a cortical ectoplasm with which the nuclei interact, at least in part, via their centrioles and centriole-associated microtubules, and whose mechanical integrity is increased by both the peripheral actin cables and a high density of microtubules. We suggest that the endoplasm is less strong and has physiological properties that enhance the differentiation of endoplasmic reticulum and nuclear envelope into Golgi body production.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Inna V Nechipurenko ◽  
Cristina Berciu ◽  
Piali Sengupta ◽  
Daniela Nicastro

The primary cilium is nucleated by the mother centriole-derived basal body (BB) via as yet poorly characterized mechanisms. BBs have been reported to degenerate following ciliogenesis in the C. elegans embryo, although neither BB architecture nor early ciliogenesis steps have been described in this organism. In a previous study (Doroquez et al., 2014), we described the three-dimensional morphologies of sensory neuron cilia in adult C. elegans hermaphrodites at high resolution. Here, we use serial section electron microscopy and tomography of staged C. elegans embryos to demonstrate that BBs remodel to support ciliogenesis in a subset of sensory neurons. We show that centriolar singlet microtubules are converted into BB doublets which subsequently grow asynchronously to template the ciliary axoneme, visualize degeneration of the centriole core, and define the developmental stage at which the transition zone is established. Our work provides a framework for future investigations into the mechanisms underlying BB remodeling.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Maximilian Joesch ◽  
David Mankus ◽  
Masahito Yamagata ◽  
Ali Shahbazi ◽  
Richard Schalek ◽  
...  

Resolving patterns of synaptic connectivity in neural circuits currently requires serial section electron microscopy. However, complete circuit reconstruction is prohibitively slow and may not be necessary for many purposes such as comparing neuronal structure and connectivity among multiple animals. Here, we present an alternative strategy, targeted reconstruction of specific neuronal types. We used viral vectors to deliver peroxidase derivatives, which catalyze production of an electron-dense tracer, to genetically identify neurons, and developed a protocol that enhances the electron-density of the labeled cells while retaining the quality of the ultrastructure. The high contrast of the marked neurons enabled two innovations that speed data acquisition: targeted high-resolution reimaging of regions selected from rapidly-acquired lower resolution reconstruction, and an unsupervised segmentation algorithm. This pipeline reduces imaging and reconstruction times by two orders of magnitude, facilitating directed inquiry of circuit motifs.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
W Christopher Risher ◽  
Sagar Patel ◽  
Il Hwan Kim ◽  
Akiyoshi Uezu ◽  
Srishti Bhagat ◽  
...  

During cortical synaptic development, thalamic axons must establish synaptic connections despite the presence of the more abundant intracortical projections. How thalamocortical synapses are formed and maintained in this competitive environment is unknown. Here, we show that astrocyte-secreted protein hevin is required for normal thalamocortical synaptic connectivity in the mouse cortex. Absence of hevin results in a profound, long-lasting reduction in thalamocortical synapses accompanied by a transient increase in intracortical excitatory connections. Three-dimensional reconstructions of cortical neurons from serial section electron microscopy (ssEM) revealed that, during early postnatal development, dendritic spines often receive multiple excitatory inputs. Immuno-EM and confocal analyses revealed that majority of the spines with multiple excitatory contacts (SMECs) receive simultaneous thalamic and cortical inputs. Proportion of SMECs diminishes as the brain develops, but SMECs remain abundant in Hevin-null mice. These findings reveal that, through secretion of hevin, astrocytes control an important developmental synaptic refinement process at dendritic spines.


Sign in / Sign up

Export Citation Format

Share Document