scholarly journals Biophysical Aspects of Directional Hearing in the Tammar Wallaby, Macropus Eugenii

1986 ◽  
Vol 121 (1) ◽  
pp. 371-394 ◽  
Author(s):  
ROGER B. COLES ◽  
ANNA GUPPY

The biophysical properties of the external ear of the Tammar wallaby, Macropus eugenii (Desmarest), have been investigated using probe microphones implanted in the ear canal. An acoustic axis of the pinna exists above 2kHz which is located close to the horizonal plane for natural ear positions, whereas azimuthal location of the acoustic axis is determined by pinna orientation on the head. The maximum on-axis acoustic pressure gain of the external ear reaches 25–30 dB for frequencies near 5 kHz. This results from pressure transformation by the horn-like pinna combined with resonance of the auditory meatus. The directionality of the pinna is similar to the sound diffraction properties of a circular aperture with an average radius based on the circumference of the pinna face. These properties determine the acceptance angle of the main lobe containing the acoustic axis and the spatial location of nulls. Large binaural intensity differences, exceeding 30dB, can be produced by the interaction of peaks and nulls between monaural directivity patterns, depending on the relative position of each pinna.

1980 ◽  
Vol 86 (1) ◽  
pp. 153-170
Author(s):  
R. B. COLES ◽  
D. B. LEWIS ◽  
K. G. HILL ◽  
M. E. HUTCHINGS ◽  
D. M. GOWER

The directional sensitivity of cochlear microphonics (CM) was studied inthe quail by rotating a free-field sound source (pure tones, 160-10 kHz)through 360° in the horizontal plane, under anechoic conditions. Sound diffraction by the head was monitored simultaneously by a microphone at the entrance to the ipsilateral (recorded) ear canal. Pressure-field fluctuations measured by the microphone were non-directional (≤ 4 dB) up to 4 kHz; the maximum head shadow was 8 dB at 6.3 kHz. In comparison, the CM sensitivity under went directional fluctuations ranging up to 25 dB for certain low, mid and high frequency band widths. There was noticeable variation between quail for frequencies producing maximum directional effects, although consistently poor directionality was seen near 820 Hz andto a lesser extent near 3.5 kHz. Well-defined CM directivity patterns reflected the presence of nulls (insensitive regions) at critical positions around the head and the number of nulls increased with frequency. Five major types of directivity patterns were defined using polar co-ordinates: cardioid, supercardioid, figure-of-eight, tripartite and multilobed. Such patterns were largely unrelated to head shadow effects. Blocking the ear canal contralateral to there corded ear was shown to effectively abolish CM directionality, largely by eliminating regions of insensitivity to sound. It is inferred that the quail ear functions as an asym metrical pressure gradient receiver, the pressure gradient function being mediated by the interauralcavity. It is proposed that the central auditory system codes directional information by a null detecting method and computes an unambiguous (i.e.intensity independent) directional cue. This spatial cue is achieved by the difference between the directional sensitivities of the two ears, defined as the Directional Index (DI). The spatial distribution of DI values (difference pattern) demonstrated ranges and peaks which closely reflected the extent and position of nulls determined from monaural directivity functions. Large directional cues (up to 25 dB) extended throughout most of the audible spectrum of the quail and the sharpness of difference patterns increased with frequency. Primary ‘best’ directions, estimated from peaks in difference patterns, tended to move towards the front of the head at higher frequencies; rearward secondary peaks also occurred. From the properties of directional cues it is suggested that the ability of birds to localize sound need not necessarily depend on frequency; however, spatial acuity may be both frequency and direction dependent, and include the possibility of front-torearerrors. The directional properties of bird vocalizations may need to bere assessed on the basis of the proposed mechanism for directional hearing.


Reproduction ◽  
1979 ◽  
Vol 57 (1) ◽  
pp. 131-136 ◽  
Author(s):  
M. B. Renfree ◽  
S. W. Green ◽  
I. R. Young

Development ◽  
1988 ◽  
Vol 104 (4) ◽  
pp. 549-556 ◽  
Author(s):  
J.M. Hutson ◽  
G. Shaw ◽  
W.S. O ◽  
R.V. Short ◽  
M.B. Renfree

The ontogeny of Mullerian inhibiting substance (MIS) production by the developing testis of an Australian marsupial, the tammar wallaby (Macropus eugenii), was determined during pouch life using an organ-culture bioassay of mouse fetal urogenital ridge. This information was related to the morphological events during testicular migration and descent. MIS biological activity was found in testes (but not ovaries or liver) of pouch young from 2 to 85 days of age. MIS production had commenced by day 2, which is within a day of the first gross morphological signs of testicular differentiation. Mullerian duct regression occurred between 10 and 30 days, which partly coincided with testicular migration to the inguinal region and enlargement of the gubernacular bulb (15 to 30 days). These observations are consistent with the hypothesis that MIS may be involved in testicular transabdominal migration. The epididymis commenced development and growth only after the testis had descended through the inguinal ring. This provides no support for the suggestion that the epididymis is involved in testicular descent into the scrotum. The basic sequence of events in post-testicular sexual differentiation in the wallaby is sufficiently similar to that seen in eutherian mammals to make it an excellent experimental model for future studies of testicular differentiation, migration and descent.


Development ◽  
1981 ◽  
Vol 62 (1) ◽  
pp. 325-338
Author(s):  
Elizabeth J. Thornber ◽  
Marilyn B. Renfree ◽  
Gregory I. Wallace

The in vitro uptake and incorporation of [3H]ui idine by blastocysts of the tammar wallaby showed a 16- and 30-fold increase from day 0 to day 10 after removal of pouch young, respectively. Two of the six non-expanded blastocysts recovered on day 5 showed a tenfold increase in incorporation. During the first ten days after removal of pouch young the diameter of the blastocyst increased threefold. Endometrial exudate from gravid uteri had a higher protein concentration than exudate from nongravid uteri (39·5 ± 0·9 and 32·0 ± 2·0 mg/ml (mean ± s.e.m.), respectively). Endometrial exudates from uteri where the blastocyst was actively growing were found to contain six uterine-specific proteins. These were separated by gradient polyacrylamide gel electrophoresis. Two of the proteins were pre-albumins and the others were larger molecules (M.W. 153000–670000). Two proteins were only present at particular stages of pregnancy: the other four were present at all stages from diapause to birth, in exudate from gravid and nongravid uteri. The specific binding of progesterone and androstenedione to proteins in endometrial exudates or uterine flushings from pregnant wallabies was less than one per cent of the value obtained from day-5 pregnant rabbits. The ability of mouse blastocysts to take up and incorporate [3H]uridine into acidinsoluble material increased threefold in the presence of day-10 endometrial exudates from wallabies. However, this was less than ten percent of the values obtained in the presence of bovine serum albumin. The concentration of calcium in endometrial exudates increased from 23·6 to 45·2 μg/ml during pregnancy; in endometrium it remained at 88·7 μg/g (wet weight) throughout pregnancy, and in plasma it was 53·3 μg/ml. The concentration of zinc in endometrial exudates was 4·5 μg/ml; in endometrium it decreased from 21·8 to 13·3 μg/g (wet weight) during pregnancy and in plasma it was 0·6 μg/ml.


Sign in / Sign up

Export Citation Format

Share Document