scholarly journals Freezing avoidance and the distribution of antifreeze glycopeptides in body fluids and tissues of Antarctic fish

1988 ◽  
Vol 137 (1) ◽  
pp. 549-563 ◽  
Author(s):  
J. A. Ahlgren ◽  
C. C. Cheng ◽  
J. D. Schrag ◽  
A. L. DeVries

The distribution of antifreeze glycopeptides (AFGPs) in the body fluids and tissues of antarctic notothenioid fish was determined. In Dissostichus mawsoni (Norman), the peritoneal, pericardial and extradural fluid, like the blood, contained all eight AFGPs and in concentrations sufficient to depress freezing points below that of sea water (−1.9 degree C). Secreted fluids including urine, endolymph and aqueous and vitreous humour either lack all AFGPs or have very low concentrations of only the low molecular weight forms and have freezing points of about −1.0 degree C, and are therefore undercooled with respect to environmental temperature. Fluids with high concentrations of AFGPs also contain high levels of proteins similar to plasma proteins. Systemic administration of tritiated AFGPs in the closely related species Trematomus bernacchii (Boulenger) yielded a distribution pattern similar to that of the native AFGPs in D. mawsoni. This suggests passive distribution of AFGPs into the various fluid compartments following secretion from the liver; a pattern typical of secreted blood proteins. Tissue distribution of AFGPs was determined by comparison with that of the extracellular space marker [14C]polyethylene glycol. AFGPs were found in the interstitial fluid of all body tissues examined except brain tissue. No tissue showed any intracellular accumulation of tritiated AFGPs from the blood.

Author(s):  
R. A. McCance ◽  
M. Masters

The body of Archidoris britannica contains very high concentrations of calcium and magnesium which appear to be combined mostly with CO3 and fluoride. The bulk of these materials are in solid deposits throughout the submucous tissue. Sodium chloride and potassium phosphate account for most of the residual mineral matter.The mucus secreted by the body has an inorganic composition resembling sea water.The visceral mass contains only one-tenth as much calcium and magnesium as the body. The predominating bases are potassium and sodium and the acid radicles are essentially chlorides and phosphates.


1977 ◽  
Vol 68 (1) ◽  
pp. 151-156
Author(s):  
R. W. EPP ◽  
P. W. WINSTON

The body fluid osmolarity of individual rotifers was measured at 12 external concentrations ranging from 32 to 957 m-osmol/1. Brachionus plicatilis is essentially an osmoconformer, since a change in the concentration of the medium results in a corresponding change in the concentration of the body fluids. Most animals were, however, slightly hyperosmotic throughout the range tested. The lowest body fluid osmolarity was 59 m-osmol/1 at an external concentration of 32 m-osmol/1. It appears that B. plicatilis is unable to tolerate the low concentrations that are frequently associated with acid water environments and this is responsible for the restriction of this species to alkaline and brackish waters.


Author(s):  
Stephen G. George ◽  
Brian J. S. Pirie

The uptake, transport, storage and excretion of zinc has been studied in Mytilus edulis. Zinc accumulates in the soft tissues in proportion to its concentration in sea water whilst the concentration in the haemolymph is little above that in the environment. Uptake is via the gut, mantle and gills. The zinc is transported from the gills and gut (t½ ≈ 8 days) via the haemolymph, either as a high molecular weight complex or in the granular amoebocytes, to the kidney. Most of the body zinc is present in the granular amoebocytes (which are found in all the body tissues) or in the gut and kidney. The kidney forms the major storage organ for many trace metals, containing 30% of the body zinc and a concentration of about 1000 μg/g. Zinc is localized as insoluble granules in membranelimited vesicles occupying some 20% of the cell volume. Excretion of zinc is by defaecation, exocytosis of the kidney granules into the urine and diapedesis of the amoebocytes. A multicompartmental model for zinc metabolism which correlates the ultrastructural and kinetic data is proposed.


1949 ◽  
Vol 26 (2) ◽  
pp. 182-200
Author(s):  
JAMES D. ROBERTSON

1. Analyses have been made of the ionic composition of the body fluids of some twenty marine invertebrates belonging to five phyla. The body fluids were again analysed after dialysis in collodion sacs against samples of the original sea water in which the animals had been kept. Comparison of the two analyses in terms of weight of water gives a true measure of ionic regulation by taking into account such factors as the Donnan equilibrium and the formation of calcium-protein complexes in those animals with significant concentrations of protein in their blood. 2. Some ionic regulation is found in all the animals examined, but it is most pronounced in the cephalopod Mollusca and the decapod Crustacea. 3. The mesogloeal tissue fluid of the jelly-fish Aurelia showed the following composition (expressed as percentage of concentration in the dialysed fluid): Na 99%, K 106%, Ca 96%, Mg 97%, Cl 104%, SO4 47%. This regulation seems to be brought about by elimination of sulphate and accumulation of potassium by the epithelia bounding the mesogloea, with resultant alteration in the remaining ions in conformity with osmotic equilibrium between the jelly and sea water. 4. In the echinoderms studied only potassium is regulated, values in the perivisceral fluid not exceeding 111% being found, with higher values in the ambulacral fluid. Polychaetes regulated potassium (up to 126%) and sometimes reduced sulphate (92%). 5. Regulation extends to all ions in the decapod Crustacea. In six species the range was Na 104-113%, K 77-128%, Ca 108-131%, Mg 14-97% Cl 98-104%, SO4 32-99%. There is a series Lithodes, Cancer, Carcinus, Palinurtis, Nephrops and Homarus in which magnesium falls from 97 to 14%; the series is roughly in accordance with increase of activity. Analyses given of the secretion from the antennary glands emphasize the importance of these organs in controlling the composition of the blood. They eliminate magnesium, sulphate, and sometimes calcium, and conserve the other ions. 6. Lamellibranchs and gastropods accumulate potassium and calcium, and eliminate sulphate to a small degree. Range of values in six species was Na 97-101%, K 107-155%, Ca 103-112%, Mg 97-103%, Cl 99-101%, SO4 87-102%. 7. Considerable ionic regulation exists in the Cephalopoda, ranges being Na 95-98%, K 152-219%, Ca 94-107%, Mg 102-103%, Cl 101-104%, SO4 29-81%. In Eledone and Sepia differential excretion by renal organs is an important factor in this. Sulphate and sodium are eliminated in quantities greater than would be present in an ultrafiltrate of the plasma, tending to lower these values, whereas the other ions are excreted in proportions below those of an ultrafiltrate, tending to elevate their concentrations in the blood. 8. The ratio of equivalents Na+K/Ca+Mg in the body fluids of these marine invertebrates remains at the sea-water figure of 3.8 in Aurelia, echinoderms, anneli worms, and lamellibranchs, but decreases in the gastropods and cephalopods to 3.5. In the decapod Crustacea, owing principally to reduction of magnesium, it increases from 3.8 in Lithodes to 9 and 12 in the Palinura and Astacura genera.


1937 ◽  
Vol 14 (1) ◽  
pp. 56-70
Author(s):  
L. C. BEADLE

1. Nereis diversicolor collected from the same locality at different times showed smaller weight increases in dilute sea water (25 per cent) during the winter than during the summer months. 2. In spite of great variations in the weight curve, the body fluid concentration curve was very constant. 3. The maintenance of hypertonic body fluids and the regulation of body volume are largely unconnected. 4. The lowering of the weight curve below that theoretically expected from the concentration curve cannot be attributed to passive salt loss through the body surface. It is suggested that this is due to the removal of fluid through the nephridia under the hydrostatic pressure produced by the contraction of the body wall muscles. 5. Animals previously subjected to dilute sea water, when placed in water isotonic with the body fluids, will increase the concentration of the latter. This result is more marked when the internal hydrostatic pressure is high. 6. The results suggest that the osmotic regulatory mechanism involves the removal by the nephridia of fluid hypotonic to the body fluids. But no direct evidence for this is available. 7. Calcium deficiency and cyanide in dilute sea water cause an increase of weight and ultimately inhibit the maintenance of hypertonic body fluids. Both these effects are reversible. 8. The mechanism by which body fluids are maintained hypertonic to the external medium is not sufficiently developed to be of survival value in the locality in which the animals were found. 9. The control of body volume is probably of greater importance. 10. The majority of the extra oxygen consumption in dilute sea water is not the result of osmotic work. It is suggested that it may be due to work done by the body wall muscles in resisting swelling.


2007 ◽  
Vol 28 (2) ◽  
pp. 277-285 ◽  
Author(s):  
Kate Jackson ◽  
Daniel Brooks

AbstractWe recount here two experiments carried out which suggest the existence of the first described integumentary osmoreceptor of its kind in a vertebrate. Domed pressure receptors, present on the cranial scales of alligators have previously been demonstrated to convey the sensation of "touch" when flattened by pressure. Here we find that morphologically similar domed sensory organs present on the post-cranial scales of crocodylid but not alligatorid crocodilians flatten when exposed to increased osmotic pressure, such as that experienced when swimming in sea water hyper-osmotic to the body fluids. When contact between the integument and the surrounding sea water solution is blocked, crocodiles are found to lose their ability to discriminate salinities. We propose that the flattening of the sensory organ in hyper-osmotic sea water is sensed by the animal as "touch", but interpreted as chemical information about its surroundings.


Since Bottazzi's (1897) first determinations of the osmotic pressure of the body fluids of various marine animals many researches have been performed by other authors, particularly in reference to the permeability of the membranes separating the body from its surroundings. Bottazzi (1897, 1906, 1908, b) investigated individuals belonging to very different groups of animals, and found that the osmotic pressure of the body fluids of marine invertebrates, and of elasmobranchs, is very similar to that of the surroundings, while the osmotic pressure of the blood of teleosts is quite different. Changing the osmotic pressure of the medium, the osmotic pressure of most marine invertebrates, and of elasmobranchs, was shown to change in the same direction (L. Fredericq, 1882, 1904; Quinton, 1897; Dakin, 1908) and to reach, finally, the value of the former. The blood of teleosts is much more independent of the medium, for it shown to change only about 30 percent, in concentration, on transferring the animals from sea water to fresh water or vice versa (Dakin, 1908; Dekhuyzen, 1904: Sumner, 1905); other authors, however (fredericq, 1904: Garrey, 1905) could not field even these variations.


1966 ◽  
Vol 12 (2) ◽  
pp. 377-384
Author(s):  
A. C. Maniar ◽  
Sarala Mavdikar

After ad ministration of an oral dose to mice, hamycin, an antifungal antibiotic, penetrated the body tissues and eliminated Cryptococcus neoformans present in the lungs. Out of 11 polyenes (hamycin, aureofungin, trichomycin, etruscomycin, amphotericin B, pimaricin, mycostatin, candidin, candicidin, PA150, and filipin), hamycin and aureofungin showed the highest "in vitro" activity against Candida albicans. The antifungal activity of hamycin, PA150, and aureofungin was increased by the addition of serum, plasma, or crystalline albumins. This increase in activity can be used as an additional characteristic to differentiate some of the polyenes. We now believe that serum was responsible for our previous findings that "high concentrations of hamycin in the organs of mice were detected". It has been shown that the complete albumin molecule was required to increase the activity of hamycin. The possibility that serum globulins or other proteins may increase the hamycin activity is not ruled out by our experiments.


2021 ◽  
Vol 62 (3) ◽  
pp. 213-219
Author(s):  
John Santiagu ◽  
Devadoss Delinta ◽  
Asirvatham Ajila ◽  
Annamalai Selvam ◽  
Senthamarai Muthukumaran ◽  
...  

In Modern medicine, metals and alloys are being used as implants. The Corrosion behaviour of various biomaterials under artificial body fluids are being studied. Artificial biomaterials are being implanted inside the human body to replace bone, teeth, etc. Even organs are being medically substituted with different types of metals such as mild steel, carbon steel, Ni-Cr alloy, Fe-Cr alloy, 22 carat Gold,24 carat Gold Tin, etc. due to their biocompatibility. This is achieved by connecting these metals directly with body tissues. The metals tend to corrode when it gets in contact with human body fluids. The body fluids thereby come in direct contact with tissues and the tissues are in contact with the metal thus causing the metal to corrode. And hence the corrosion resistance studies such as polarisation, AC impedance, cyclic voltammetric studies, etc, are being conducted in a medium like artificial blood plasma, artificial urine, artificial salvia, artificial sweat, Hank solution, Ringer solution, etc. The different body fluids are examined in the presence of different implantation metals by electrochemical methods and protective films are formed which are analyzed by various surface analysis techniques such as AFM, FTIR-UV, SEM, etc. The research findings will thereby be very helpful to the medical field.


Sign in / Sign up

Export Citation Format

Share Document