Wing Shape and Flight Behaviour in Butterflies (Lepidoptera: Papilionoidea and Hesperioidea): A Preliminary Analysis

1988 ◽  
Vol 138 (1) ◽  
pp. 271-288 ◽  
Author(s):  
C. R. BETTS ◽  
R. J. WOOTTON

Representatives of six butterfly species, flying freely in the field or in simulated field conditions, were filmed with a high-speed ciné camera and subjected to kinematic and morphometric analysis. This is the first detailed investigation on an insect performing the varied patterns of ‘natural’ flight. Kinematic parameters in representative sequences of selected flight modes were calculated and compared, and wing shapes were characterized using aspect ratio and non-dimensional moment parameters. The analyses and field observations of these and other butterflies suggest possible correlations between flight performance and wing shape. The behaviour of individual species conforms reasonably well with crude predictions based on aspect ratio, wing loading and wing inertia.

1995 ◽  
Vol 43 (6) ◽  
pp. 657 ◽  
Author(s):  
MP Rhodes

The wing morphology and flight performance of Phoniscus papuensis was examined to determine whether the wing morphology reflected published observations of flight behaviour and habitat preference. Wingspan and wing area were above the vespertilionid average for its mass. The wing loading and aspect ratio were below average. The wing loading is the lowest of any Australian vespertilionid. P. papuensis was able to successfully negotiate arrays of obstacles 22 cm apart 60% of the time. This ability, and the extremely broad, lightly loaded wings, afford the species unique flight characteristics which have been observed in the field and allow flight in complex, 'closed' habitats.


2015 ◽  
Vol 282 (1816) ◽  
pp. 20151935 ◽  
Author(s):  
Xia Wang ◽  
Julia A. Clarke

Avian wing shape has been related to flight performance, migration, foraging behaviour and display. Historically, linear measurements of the feathered aerofoil and skeletal proportions have been used to describe this shape. While the distribution of covert feathers, layered over the anterior wing, has long been assumed to contribute to aerofoil properties, to our knowledge no previous studies of trends in avian wing shape assessed their variation. Here, these trends are explored using a geometric–morphometric approach with landmarks describing the wing outline as well as the extent of dorsal and ventral covert feathers for 105 avian species. We find that most of the observed variation is explained by phylogeny and ecology but shows only a weak relationship with previously described flight style categories, wing loading and an investigated set of aerodynamic variables. Most of the recovered variation is in greater primary covert feather extent, followed by secondary feather length and the shape of the wing tip. Although often considered a plastic character strongly linked to flight style, the estimated ancestral wing morphology is found to be generally conservative among basal parts of most major avian lineages. The radiation of birds is characterized by successive diversification into largely distinct areas of morphospace. However, aquatic taxa show convergence in feathering despite differences in flight style, and songbirds move into a region of morphospace also occupied by basal taxa but at markedly different body sizes. These results have implications for the proposed inference of flight style in extinct taxa.


2016 ◽  
Vol 3 (11) ◽  
pp. 160398 ◽  
Author(s):  
Gary F. McCracken ◽  
Kamran Safi ◽  
Thomas H. Kunz ◽  
Dina K. N. Dechmann ◽  
Sharon M. Swartz ◽  
...  

The performance capabilities of flying animals reflect the interplay of biomechanical and physiological constraints and evolutionary innovation. Of the two extant groups of vertebrates that are capable of powered flight, birds are thought to fly more efficiently and faster than bats. However, fast-flying bat species that are adapted for flight in open airspace are similar in wing shape and appear to be similar in flight dynamics to fast-flying birds that exploit the same aerial niche. Here, we investigate flight behaviour in seven free-flying Brazilian free-tailed bats ( Tadarida brasiliensis ) and report that the maximum ground speeds achieved exceed speeds previously documented for any bat. Regional wind modelling indicates that bats adjusted flight speeds in response to winds by flying more slowly as wind support increased and flying faster when confronted with crosswinds, as demonstrated for insects, birds and other bats. Increased frequency of pauses in wing beats at faster speeds suggests that flap-gliding assists the bats' rapid flight. Our results suggest that flight performance in bats has been underappreciated and that functional differences in the flight abilities of birds and bats require re-evaluation.


Bat wing morphology is considered in relation to flight performance and flight behaviour to clarify the functional basis for eco-morphological correlations in flying animals. Bivariate correlations are presented between wing dimensions and body mass for a range of bat families and feeding classes, and principal-components analysis is used to measure overall size, wing size and wing shape. The principal components representing wing size and wing shape (as opposed to overall size) are interpreted as being equivalent to wing loading and to aspect ratio. Relative length and area of the hand-wing or wingtip are determined independently of wing size, and are used to derive a wingtip shape index, which measures the degree of roundedness or pointedness of the wingtip. The optimal wing form for bats adapted for different modes of flight is predicted by means of mechanical and aerodynamic models. We identify and model aspects of performance likely to influence flight adaptation significantly; these include selective pressures for economic forward flight (low energy per unit time or per unit distance (equal to cost of transport)), for flight at high or low speeds, for hovering, and for turning. "Turning performance is measured by two quantities: manoeuvrability, referring to the minimum space required for a turn at a given speed; and agility, relating to the rate at which a turn can be initiated. High flight speed correlates with high wing loading, good manoeuvrability is favoured by low wing loading, and turning agility should be associated with fast flight and with high wing loading. Other factors influencing wing adaptations, such as migration, flying with a foetus or young or carrying loads in flight (all of which favour large wing area), flight in cluttered environments (short wings) and modes of landing, are identified. The mechanical predictions are cast into a size-independent principal-components form, and are related to the morphology and the observed flight behaviour of different species and families of bats. In this way we provide a broadly based functional interpretation of the selective forces that influence wing morphology in bats. Measured flight speeds in bats permit testing of these predictions. Comparison of open-field free-flight speeds with morphology confirms that speed correlates with mass, wing loading and wingtip proportions as expected; there is no direct relation between speed and aspect ratio. Some adaptive trends in bat wing morphology are clear from this analysis. Insectivores hunt in a range of different ways, which are reflected in their morphology. Bats hawking high-flying insects have small, pointed wings which give good agility, high flight speeds and low cost of transport. Bats hunting for insects among vegetation, and perhaps gleaning, have very short and rounded wingtips, and often relatively short, broad wings, giving good manoeuvrability at low flight speeds. Many insectivorous species forage by ‘ flycatching ’ (perching while seeking prey) and have somewhat similar morphology to gleaners. Insectivorous species foraging in more open habitats usually have slightly longer wings, and hence lower cost of transport. Piscivores forage over open stretches of water, and have very long wings giving low flight power and cost of transport, and unusually long, rounded tips for control and stability in flight. Carnivores must carry heavy loads, and thus have relatively large wing areas; their foraging strategies consist of perching, hunting and gleaning, and wing structure is similar to that of insectivorous species with similar behaviour. Perching and hovering nectarivores both have a relatively small wing area: this surprising result may result from environmental pressure for a short wingspan or from the advantage of high speed during commuting flights; the large wingtips of these bats are valuable for lift generation in slow flight. The relation between flight morphology (as an indicator of flight behaviour) and echolocation is considered. It is demonstrated that adaptive trends in wing adaptations are predictably and closely paralleled by echolocation call structure, owing to the joint constraints of flying and locating food in different ways. Pressures on flight morphology depend also on size, with most aspects of performance favouring smaller animals. Power rises rapidly as mass increases; in smaller bats the available energy margin is greater than in larger species, and they may have a more generalized repertoire of flight behaviour. Trophic pressures related to feeding strategy and behaviour are also important, and may restrict the size ranges of different feeding classes: insectivores and primary nectarivores must be relatively small, carnivores and frugivores somewhat larger. The relation of these results to bat community ecology is considered, as our predictions may be tested through comparisons between comparable, sympatric species. Our mechanical predictions apply to all bats and to all kinds of bat communities, but other factors (for example echolocation) may also contribute to specialization in feeding or behaviour, and species separation may not be determined solely by wing morphology or flight behaviour. None the less, we believe that our approach, of identifying functional correlates of bat flight behaviour and identifying these with morphological adaptations, clarifies the eco-morphological relationships of bats.


2002 ◽  
Vol 80 (3) ◽  
pp. 450-460 ◽  
Author(s):  
Martin P Rhodes

In ecomorphological relationships, ecological similarities or overlap between species may occur with morphological similarity or overlap. Determination of morphological distinctness is thus important when relating morphology with ecology. This is the first of a series of papers investigating the ecomorphology of Microchiroptera in southeast Queensland, Australia, and in it I describe means and ranges of measurements and distinctness of wing morphology. In 21 species from this region, species means for aspect ratio (relative wing width) ranged from 4.98 to 8.25, while wing loading (mass by wing area) ranged from 4.32 to 15.9 N/m2. For these variables, each species' range (minimum–maximum) overlaps that of at least one other species, with greater overlap at lower values. Morphological overlap was frequent, owing to a consistently wide range of wing dimensions within species, with greater overlap at low aspect ratios and wing loadings where species were more closely packed. For all variables, the variance arising from the method of measurement (wing extend and trace) was less than intraspecific variance, but in many cases was similar to interspecific overlap. A proportion of the range and overlap in wing-morphology variables is attributable to measurement variance. The variance in aspect ratio was lower than in wing loading at species, genus, family, and region levels. Phylogenetic constraint on aspect ratio appears to be greater than on wing loading, particularly at the family level. At family and genus levels, aspect ratio varied less than wing loading. No overlap in aspect ratio occurred at family level. I group species into morphologically distinct units and provide predictions of the flight behaviour of these.


1980 ◽  
Vol 23 (3) ◽  
pp. 630-645 ◽  
Author(s):  
Gerald Zimmermann ◽  
J.A. Scott Kelso ◽  
Larry Lander

High speed cinefluorography was used to track articulatory movements preceding and following full-mouth tooth extraction and alveoloplasty in two subjects. Films also were made of a control subject on two separate days. The purpose of the study was to determine the effects of dramatically altering the structural dimensions of the oral cavity on the kinematic parameters of speech. The results showed that the experimental subjects performed differently pre and postoperatively though the changes were in different directions for the two subjects. Differences in both means and variabilities of kinematic parameters were larger between days for the experimental (operated) subjects than for the control subject. The results for the Control subject also showed significant differences in the mean values of kinematic variables between days though these day-to-day differences could not account for the effects found pre- and postoperatively. The results of the kinematic analysis, particularly the finding that transition time was most stable over the experimental conditions for the operated subjects, are used to speculate about the coordination of normal speech.


2016 ◽  
Vol 53 (5) ◽  
pp. 1305-1316 ◽  
Author(s):  
Weihua Su ◽  
Sean Shan-Min Swei ◽  
Guoming G. Zhu

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Jianhui He ◽  
Yonghua Zhang

Biomimetics takes nature as a model for inspiration to immensely help abstract new principles and ideas to develop various devices for real applications. In order to improve the stability and maneuvering of biomimetic fish like underwater propulsors, we selected bluespotted ray that propel themselves by taking advantage of their pectoral fins as target. First, a biomimetic robotic undulating fin driven propulsor was built based on the simplified pectoral structure of living bluespotted ray. The mechanical structure and control circuit were then presented. The fin undulating motion patterns, fin ray angle, and fin shape to be investigated are briefly introduced. Later, the kinematic analysis of fin ray and the whole fin is discussed. The influence of various kinematic parameters and morphological parameters on the average propulsion velocity of the propulsor was analyzed. Finally, we conclude that the average propulsion velocity generally increases with the increase of kinematic parameters such as frequency, amplitude, and wavelength, respectively. Moreover, it also has a certain relationship with fin undulating motion patterns, fin ray angle, fin shape, and fin aspect ratio.


2020 ◽  
Author(s):  
Teja Curk ◽  
Martina Scacco ◽  
Kamran Safi ◽  
Martin Wikelski ◽  
Wolfgang Fiedler ◽  
...  

AbstractBackgroundThe use of tracking technologies is key for the study of animal movement and pivotal to ecological and conservation research. However, the potential effects of devices attached to animals are sometimes neglected. The impact of tagging not only rises welfare concerns, but can also bias the data collected, causing misinterpretation of the observed behaviour which invalidates the comparability of information across individuals and populations. Patagial (wing) tags have been extensively used as a marking method for visual resightings in endangered vulture species, but their effect on the aerodynamics of the birds and their flight behaviour is yet to be investigated. Using GPS backpack mounted devices, we compared the flight performance of 27 captive and wild Cape Vultures (Gyps coprotheres), marked with either patagial tags or coloured leg bands.ResultsIndividuals equipped with patagial tags were less likely to fly, travelled shorter distances and flew slower compared to individuals equipped with leg bands. These effects were also observed in one individual that recovered its flight performance after replacing its patagial tag by a leg band.ConclusionsAlthough we did not measure the effects of patagial tags on body condition or survival, our study strongly suggests that they have severe adverse effects on vultures’ flight behaviour and emphasises the importance of investigating the effects that tagging methods can have on the behaviour and conservation of the study species, as well as on the quality of the scientific results.


Sign in / Sign up

Export Citation Format

Share Document