scholarly journals The Micro-Estimation of Sodium, Potassium, Calcium, Magnesium, Chloride, and Sulphate in Sea Water and the Body Fluids of Marine Animals

1939 ◽  
Vol 16 (2) ◽  
pp. 155-177
Author(s):  
J. D. ROBERTSON ◽  
D. A. WEBB

Methods are presented for the estimation of sodium, potassium, calcium, magnesium, chloride and sulphate in sea water and in other solutions, such as the blood and body fluids of marine animals, whose inorganic composition is similar to that of sea water. The estimations may be performed on 1 ml. samples, and the limit of error is about 2%. Sodium is precipitated and weighed as sodium zinc uranyl acetate; potassium is precipitated as potassium silver cobaltinitrite which is titrated with ceric sulphate; calcium is titrated with ceric sulphate after two precipitations as oxalate; magnesium is precipitated with hydroxyquinoline and the precipitate brominated and estimated iodometrically; chloride is treated with silver iodate and the released iodate estimated iodometrically; sulphate is titrated with barium chloride using sodium rhodizonate as indicator.

Since Bottazzi's (1897) first determinations of the osmotic pressure of the body fluids of various marine animals many researches have been performed by other authors, particularly in reference to the permeability of the membranes separating the body from its surroundings. Bottazzi (1897, 1906, 1908, b) investigated individuals belonging to very different groups of animals, and found that the osmotic pressure of the body fluids of marine invertebrates, and of elasmobranchs, is very similar to that of the surroundings, while the osmotic pressure of the blood of teleosts is quite different. Changing the osmotic pressure of the medium, the osmotic pressure of most marine invertebrates, and of elasmobranchs, was shown to change in the same direction (L. Fredericq, 1882, 1904; Quinton, 1897; Dakin, 1908) and to reach, finally, the value of the former. The blood of teleosts is much more independent of the medium, for it shown to change only about 30 percent, in concentration, on transferring the animals from sea water to fresh water or vice versa (Dakin, 1908; Dekhuyzen, 1904: Sumner, 1905); other authors, however (fredericq, 1904: Garrey, 1905) could not field even these variations.


1940 ◽  
Vol 23 (5) ◽  
pp. 575-584 ◽  
Author(s):  
William H. Cole

1. The electrolyte composition, the pH, and freezing points of the fluids of several invertebrates and one primitive chordate are reported. 2. Fluids of the worms, echinoderms, and the clam Venus were isotonic with sea water; fluids of the Arthropoda were hypertonic to sea water. 3. The pH of all fluids was below that of sea water. In the Arthropoda and Myxine less individual variation in pH appeared than in the echinoderms and worms. 4. Ratios of ionic concentrations in the fluid to those in the sea water indicated (1) uniform distribution of ions between the internal and external media for the echinoderms and Venus, (2) differential distribution of potassium and magnesium in the worms; (3) differential distribution of sulfate, magnesium, potassium, and calcium in the Arthropoda; and (4) differential distribution of calcium, magnesium, and sulfate in Myxine. 5. The unequal distribution of ions implies the expenditure of energy against a concentration gradient across the absorbing or excreting membranes, a capacity frequently overlooked in the invertebrates. 6. The sera of the Arthropoda from diluted sea water showed higher concentrations of sodium, potassium, calcium, and chloride ions relative to the respective concentrations in the external medium than in normal sea water, and also showed different orders for those ions. 7. The increase in osmotic pressure of the sera of the animals moving into brackish water is caused by unequal accumulation of sodium, potassium, calcium, and chloride ions. Sulfate and magnesium ionic ratios do not change.


1932 ◽  
Vol 9 (1) ◽  
pp. 61-68
Author(s):  
K. HUKUDA

1. Several species of marine invertebrates, and an elasmobranch, have been kept in diluted media. The increase of body weight so caused was compared with the resulting dilution of the body fluids. 2. The bounding membrane of the invertebrates was permeable to salts when the animals were immersed in diluted sea water. 3. The bounding membrane of the elasmobranch was semipermeable, i.e. permeable to water but not to solute. There is a close quantitative agreement between the osmotic swelling observed and the diminution of the osmotic pressure of the blood.


1988 ◽  
Vol 136 (1) ◽  
pp. 13-22 ◽  
Author(s):  
S. Morisawa ◽  
M. Morisawa

Spermatozoa of rainbow trout and chum salmon, which have no potential for motility in the testis, acquire that potential in the sperm duct. This paper demonstrates that there is little difference between the levels of sodium, potassium, calcium, magnesium, chloride and osmolality of the seminal plasma in the testis and in the sperm duct. However, the bicarbonate concentration of the seminal plasma and the pH value of semen were higher in the sperm duct than in the testis. When immotile spermatozoa obtained from the testis were incubated in artificial seminal plasma with a high pH and containing HCO3-, spermatozoa became motile within 1 h. These results suggest that spermatozoa of salmonid fish acquire the potential for motility as a result of the increase in seminal bicarbonate concentration and pH that occurs as spermatozoa pass from the testis to the sperm duct.


1971 ◽  
Vol 55 (2) ◽  
pp. 357-369
Author(s):  
D. W. SUTCLIFFE

1. A comparison was made of the body water contents and the concentrations of sodium, potassium and chloride in the blood and body water of Gammarus zaddachi, G. locusta and Marinogammarus finmarchicus. 2. G. zaddachi had a slightly higher body water content than G. locusta and M. finmarchicus. 3. In all three species the blood chloride concentration was lower than the external chloride concentration in 80-113 % sea water, but the blood sodium concentration was equal to or slightly above the sodium concentration in the external medium. 4. The total body sodium concentration was always greater than the total body chloride concentration. In M.finmarchicus the ratio of body sodium/chloride increased from 1.2 to 1.3 over the salinity range 100-20% sea water. In G. zaddachi the ratio of body sodium/chloride increased from 1.08 at 100% sea water to 1.87 in 0.25 mM/l NaCl. 5. The total body potassium concentration remained constant. The potassium loss rate and the balance concentration were relatively high in G. zaddachi. 6. The porportion of body water in the blood space was calculated from the assumption that a Donnan equilibrium exists between chloride and potassium ions in the extracellular blood space and the intracellular space. In G. zaddachi the blood space was equivalent to 60% body H2O at 100% sea water, and equivalent to 50% body H2O at 40% sea water down to 0.5 mM/l NaCl. In M.finmarchicus the blood space was equivalent to 38-44% body H2O at salinities of 20-100% sea water. 7. The mean intracellular concentrations of sodium, potassium and chloride were also calculated. It was concluded that for each ion its intracellular concentration is much the same in the four euryhaline gammarids. The intracellular chloride concentration is roughly proportional to the blood chloride concentration. The intracellular sodium concentration is regulated in the face of large changes in the blood sodium concentration.


1971 ◽  
Vol 55 (2) ◽  
pp. 345-355
Author(s):  
D. W. SUTCLIFFE

1. The water content, and the concentrations of sodium potassium and chloride in the blood and body water were determined in Gammarus pulex acclimatized to external salinities ranging from 0.06 mM/l NaCl up to 50 % sea water. 2. The mean body water content remained constant at 79.0-80.3 % body wet weight. The total body sodium and chloride concentrations were lowered in 0.06 mM/l NaCl and increased markedly at salinities above 10% sea water. The normal ratio of body sodium/chloride was 1.45-1.70, decreasing to 1.0 at 50% sea water. 3. The total body potassium concentration remained constant at 47.5-55.2 mM/kg body H2O. The rate of potassium loss across the body surface was relatively fast. Potassium balance was maintained at an external potassium concentration of 0.005 mM/l by starved animals, and at 0.005 mM/l by fed animals. 4. The proportion of body water in the blood space was calculated from the concentrations of potassium and chloride in the blood and in the body water. The blood space contained 38-42% body H2O in animals from fresh water. The blood space decreased to 31 % body H2O in animals from 0.06 mM/l NaCl. The sodium space was equivalent to about 70 % body H2O. 5. The mean intracellular concentrations of sodium, potassium and chloride were estimated and the results were compared with previous analyses made on the tissues of G. pulex and other crustaceans. It was concluded that in G. pulex from fresh water the distribution of potassium and chloride ions between the extracellular blood space and the intracellular space approximately conforms to a Donnan equilibrium. 30-40% of the body sodium is apparently located in the intracellular space.


Author(s):  
G. W. Bryan ◽  
Eileen Ward

SUMMARYThe accumulation of 137Cs from sea water has been examined in relation to potassium metabolism in the lobster Homarus vulgaris and in the prawn Palaemon serratus. In unfed animals 137Cs is taken up and lost far more slowly than 42K. Although all the inactive K in the animals can be exchanged with 42K, higher whole-animal concentration factors are reached for 137Cs (about eight for lobsters and twenty-five for prawns). This is because both species have higher plasma/medium ratios for 137Cs than K at equilibrium despite the selective excretion of 137Cs. Also, except for the hepatopancreas in lobsters and fed prawns, all soft tissues can probably attain higher tissue/plasma ratios for 137Cs than inactive K.Uptake of both isotopes has also been studied in the freshwater crayfish Austropotamobius pallipes pallipes. In crayfish in o-i % sea water 137Cs is not concentrated to the same extent as K by whole animals (50-200 for 137Cs against about 4500 for K). Although the situation between plasma and tissues resembles that in the marine animals, 137Cs cannot be accumulated in the plasma to the same degree as K. Crayfish selectively excrete 137Cs in the urine relative to K at a lower concentration than in the plasma.In the accumulation of 137Cs by all species, muscle is the principal limiting factor in uptake and loss, but with 42K the body surface becomes more limiting.Experiments on the absorption of 137Cs from food in prawns and freshwater crayfish have been carried out. In prawns in a constant environment, feeding is probably less important than uptake over the body surface while in crayfish feeding is probably much more important.


Author(s):  
R. A. Robinson

Sea water is a complex solution in which the principal ions are sodium, potassium, calcium, magnesium, chloride and sulphate. The vapour pressure (V.P.) of such a solution can be calculated approximately by making the assumption that each salt contributes to the vapour pressure lowering in amount proportional to its concentration, but such a calculation would ignore the interactions between the various ions. The theory of these interactions has been worked out only for very dilute solutions and it is, therefore, better to rely on direct experimental determinations. Measurements have now been made by the isopiestic vapour-pressure method (Robinson & Sinclair, 1934), in which samples of sea water are equilibrated with sodium chloride solutions until they have the same vapour pressure. The results are expressed in terms of chlorinities of sea water and molalities (moles per kilogram of H2O) of sodium chloride solution which have the same vapour pressure. It is hoped that the results will be of use to physiologists who have occasion to make up salt solutions equivalent to sea water.


Sign in / Sign up

Export Citation Format

Share Document