scholarly journals REGULATION OF PULMONARY BLOOD FLOW AND OF BLOOD PRESSURE IN A MANGROVE CRAB (GONIOPSIS CRUENTATA)

1992 ◽  
Vol 163 (1) ◽  
pp. 297-316
Author(s):  
J. L. WILKENS ◽  
R. E. YOUNG

The air-breathing mangrove crab Goniopsis cruentata ventilates the branchial chambers with its scaphognathites (SG). Ventilation is predominantly in the forward direction, but is punctuated by bouts of reversed pumping. Reversals are more frequent when crabs are in air than in water, and yet more frequent during respiratory stress (hypoxia or exercise). Reversed SG pumping is tightly coupled with bursts of impulses to the dorsal-ventral muscles (DVM) which span the anterolateral thorax. Phasic contractions of the DVMs increase the hemolymph pressure in the dorsal sinuses. These pressure pulses help drive hemolymph through the lungs. The coupled SG reversed ventilation and DVM-assisted increases in lung perfusion appear to be an adaptation to increase gas exchange at the lungs. When crabs are made hyper- or hypotensive by changes in hemolymph volume, the EMG activity of the DVMs dramatically decreases or increases, respectively. The resultant expansion or constriction of the dorsal sinuses is an effective baroreceptor reflex producing short-term adjustments in hemolymph pressure.

1994 ◽  
Vol 267 (2) ◽  
pp. H521-H527 ◽  
Author(s):  
A. Just ◽  
U. Wittmann ◽  
B. Nafz ◽  
C. D. Wagner ◽  
H. Ehmke ◽  
...  

To compare the contribution of nitric oxide (NO) to the buffering of short-term and circadian fluctuations of arterial blood pressure with that of the baroreceptor reflex, conscious foxhounds were subjected to continuous 24-h blood pressure recordings. A pressure transducer was placed into the lumen of the abdominal aorta. Telemetry recordings were done under control conditions, following blockade of NO formation by intravenous bolus injection of NG-nitro-L-arginine (L-NNA; 16.5 +/- 2 mg/kg body wt) and after total sinoaortic and cardiopulmonary denervation in five dogs each. L-NNA produced a sustained elevation of mean arterial pressure (MAP; 137.2 +/- 6.4 mmHg vs. control, 112.9 +/- 3.7 mmHg). After denervation, no significant increase of MAP was found (113.5 +/- 4.1 mmHg), but the standard deviation of the MAP histogram was significantly greater (22.5 +/- 3.1 vs. 10.6 +/- 0.9 mmHg, P < 0.05). Sequential spectral analysis showed that total power between 0 and 0.5 Hz was elevated more than twofold after L-NNA (P < 0.05). This was due primarily to increased power in the range above 0.1 Hz. After denervation, total power increased about three-fold (P < 0.05), almost exclusively occurring below 0.04 Hz. Power in the range above 0.2 Hz was diminished, although not significantly. It is concluded that in the conscious dog, NO, as well as the baroreceptor reflex, is an effective blood pressure buffer. NO is most effective above 0.1 Hz, whereas the baroreceptors primarily buffer fluctuations slower than 0.04 Hz.


Genetics ◽  
2002 ◽  
Vol 160 (4) ◽  
pp. 1687-1695
Author(s):  
C M Kendziorski ◽  
A W Cowley ◽  
A S Greene ◽  
H C Salgado ◽  
H J Jacob ◽  
...  

Abstract To gain information about the genetic basis of a complex disease such as hypertension, blood pressure averages are often obtained and used as phenotypes in genetic mapping studies. In contrast, direct measurements of physiological regulatory mechanisms are not often obtained, due in large part to the time and expense required. As a result, little information about the genetic basis of physiological controlling mechanisms is available. Such information is important for disease diagnosis and treatment. In this article, we use a mathematical model of blood pressure to derive phenotypes related to the baroreceptor reflex, a short-term controller of blood pressure. The phenotypes are then used in a quantitative trait loci (QTL) mapping study to identify a potential genetic basis of this controller.


1999 ◽  
Vol 97 (3) ◽  
pp. 319 ◽  
Author(s):  
D.A. DUPREZ ◽  
M.L. DE BUYZERE ◽  
B. DRIEGHE ◽  
F. VANHAVERBEKE ◽  
Y. TAES ◽  
...  

Hypertension ◽  
1996 ◽  
Vol 27 (3) ◽  
pp. 408-413 ◽  
Author(s):  
Minoru Kawamura ◽  
Toshiyuki Adachi ◽  
Jun Nakajima ◽  
Takuya Fujiwara ◽  
Katsuhiko Hiramori

Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1502
Author(s):  
Katarzyna Łabno-Kirszniok ◽  
Agata Kujawa-Szewieczek ◽  
Andrzej Wiecek ◽  
Grzegorz Piecha

Increased marinobufagenin (MBG) synthesis has been suggested in response to high dietary salt intake. The aim of this study was to determine the effects of short-term changes in sodium intake on plasma MBG levels in patients with primary salt-sensitive and salt-insensitive hypertension. In total, 51 patients with primary hypertension were evaluated during acute sodium restriction and sodium loading. Plasma or serum concentrations of MBG, natriuretic pro-peptides, aldosterone, sodium, potassium, as well as hematocrit (Hct) value, plasma renin activity (PRA) and urinary sodium and potassium excretion were measured. Ambulatory blood pressure monitoring (ABPM) and echocardiography were performed at baseline. In salt-sensitive patients with primary hypertension plasma MBG correlated positively with diastolic blood pressure (ABPM) and serum NT-proANP concentration at baseline and with serum NT-proANP concentration after dietary sodium restriction. In this subgroup plasma MBG concentration decreased during sodium restriction, and a parallel increase of PRA was observed. Acute salt loading further decreased plasma MBG concentration in salt-sensitive subjects in contrast to salt insensitive patients. No correlation was found between plasma MBG concentration and left ventricular mass index. In conclusion, in salt-sensitive hypertensive patients plasma MBG concentration correlates with 24-h diastolic blood pressure and dietary sodium restriction reduces plasma MBG levels. Decreased MBG secretion in response to acute salt loading may play an important role in the pathogenesis of salt sensitivity.


Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 1019
Author(s):  
Barbara Frączek ◽  
Aleksandra Pięta ◽  
Adrian Burda ◽  
Paulina Mazur-Kurach ◽  
Florentyna Tyrała

The aim of this meta-analysis was to review the impact of a Paleolithic diet (PD) on selected health indicators (body composition, lipid profile, blood pressure, and carbohydrate metabolism) in the short and long term of nutrition intervention in healthy and unhealthy adults. A systematic review of randomized controlled trials of 21 full-text original human studies was conducted. Both the PD and a variety of healthy diets (control diets (CDs)) caused reduction in anthropometric parameters, both in the short and long term. For many indicators, such as weight (body mass (BM)), body mass index (BMI), and waist circumference (WC), impact was stronger and especially found in the short term. All diets caused a decrease in total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG), albeit the impact of PD was stronger. Among long-term studies, only PD cased a decline in TC and LDL-C. Impact on blood pressure was observed mainly in the short term. PD caused a decrease in fasting plasma (fP) glucose, fP insulin, and homeostasis model assessment of insulin resistance (HOMA-IR) and glycated hemoglobin (HbA1c) in the short run, contrary to CD. In the long term, only PD caused a decrease in fP glucose and fP insulin. Lower positive impact of PD on performance was observed in the group without exercise. Positive effects of the PD on health and the lack of experiments among professional athletes require longer-term interventions to determine the effect of the Paleo diet on athletic performance.


Sign in / Sign up

Export Citation Format

Share Document