scholarly journals VAGAL REGULATION OF INTRACARDIAC SHUNTING IN THE TURTLE PSEUDEMYS SCRIPTA

1994 ◽  
Vol 186 (1) ◽  
pp. 109-126 ◽  
Author(s):  
J. Hicks ◽  
S. Comeau

Two principal hypotheses account for intracardiac shunting in reptiles. The ‘pressure shunting’ hypothesis proposes that there is no fuctional separation between the ventricular cava during systole. The ‘washout shunting’ hypothesis suggests that the cavum pulmonale is functionally separated from the rest of the ventricle during systole. The purpose of this study was to test the two principal hypotheses in a turtle, Pseudemys scripta, after inducing a right-to-left shunt by electrical stimulation of the vagus nerve. Animals were anaesthetized with sodium pentobarbital (30–40 mg kg-1), tracheotomized and mechanically ventilated. Two experimental groups were used. Both groups had the right and left cervical vagi exposed and sectioned and silver bipolar electrodes were attached for electrical stimulation. In addition, cardiac function was evaluated by determining the pulmonary blood flow, pulmonary arterial pressure, peak systolic pressure in the cavum pulmonale, central arterial pressure, pulmonary vascular resistance and heart rate. In group I, hydrogen electrodes were inserted into the right aorta, the left aorta and the pulmonary artery. Hydrogen, dissolved in saline, was infused into the left atrium, jugular vein and cavum pulmonale. Blood flow from these sites was deduced from detection of a H2 signal in the right and left aortae and the pulmonary artery. In group II, catheters were inserted in the left and right atria and aortae for the measurement of blood gases. For both groups, the protocol consisted of control periods and periods of electrical stimulation of the efferent and afferent ends of the vagus nerve. During the control periods, infusion of a H2 solution into either the left atrium or the jugular vein resulted in the detection of H2 in the right and left aortae and the pulmonary artery. This suggested that both right-to-left and left-to-right intracardiac shunts were present. H2 infused into the cavum pulmonale was always detected in the pulmonary artery but never in the left or right aortae. During stimulation of the right vagal efferents, a bradycardia developed (heart rate declined by 65 %), pulmonary blood flow was reduced by 73 % and pulmonary vascular resistance increased by 158 %. This was accompanied by a reduction in the PO2 of both the right and left aortae, although the PO2 of the left and right atria remained constant. Under these conditions, H2 infused into the jugular vein and the left atrium was detected in the right and left aortae and the pulmonary artery of all animals studied. Infusion of H2 into the cavum pulmonale was detected in the right and left aortae in only two animals. The results supported the washout mechanism for right-to-left intracardiac shunting.

1987 ◽  
Vol 65 (5) ◽  
pp. 785-790 ◽  
Author(s):  
J. Y. Coe ◽  
P. M. Olley ◽  
F. Hamilton ◽  
T. Vanhelder ◽  
F. Coceani

New methods for chronic instrumentation of the newborn piglet are described, which allow continuous monitoring of not only pressures in the pulmonary artery and aorta but also in the left and right atria, pulmonary vein, as well as main branch pulmonary artery flows. Changes in pulmonary vascular tone to short-acting vasoactive agents can be recognized by redistribution of flow between lungs and localized to the precapillary vessels or pulmonary veins. Furthermore, vasoactive response in small pulmonary veins may be investigated as well as selective metabolic studies across the right lung. Methods are also described for the chronic cannulation of the neck vessels permitting repeated introduction of catheters on separate study days in the conscious piglet. The pulmonary circulation of the piglet constricts briskly to moderate hypoxemia ([Formula: see text], 1 Torr = 133.32 Pa) with little change in cardiac output or systemic resistance. The piglet demonstrated responses to dilator and constrictor prostaglandins generally similar to the lambs and other species. None of these agents significantly affect pulmonary venous tone.


2018 ◽  
Vol 16 (2) ◽  
pp. 37-41
Author(s):  
Nikolay S Efimov ◽  
Yulia N Bessolova ◽  
Inessa V Karpova ◽  
Andrei A Lebedev ◽  
Petr D Shabanov

In the protocols of modern pharmacological studies of a self-stimulation reaction in rodents, stimulating electrodes are implanted as a rule unilaterally. The reinforcing properties of the left and right hypothalamus were suggested to be identical. The aim of the study was to clear up if the possibilities of the left and right hypothalamus to produce self-stimulation are similar or not. Methods. The study was carried out on adult male Wistar rats. The electrodes were implanted into the lateral hypothalamus bilaterally. The rats, in which an approach reaction was observed, learned self-stimulation in the Skinner box with stimulation of the left or right hypothalamus as a reinforcing agent descending thresholds of stimulation up to minimal one. Results. Self-stimulation of the left hypothalamus gave an approach reaction in the majority of rats (81.8%), self-stimulation reaction was developed in 72.7% of rats. Only 46.2% rats reacted on stimulation of the right hypothalamus, self-stimulation reaction was developed in 30.8% of rats. The thresholds of positive and negative reactions registered after electrical stimulation of both sides of hypothalamus were significantly differed (H(3, N = 31) = 14,92; p = 0,002). And these changes were not connected with lateralization but with sign of reaction: in general the thresholds of approach reaction were higher than thresholds of avoidance. Conclusion. In the paper, the fact of different possibility of approach reaction and self-stimulation development as a result of electrical stimulation of the left and right hypothalamus in rats has been described. After stimulation of the left hypothalamus, a possibility to receive positive reaction and to form self-stimulation on its basis is higher than after stimulation of the right hypothalamus. (For citation: Efimov NS, Bessolova YN, Karpova IV, et al. Asymmetry of reinforcing properties of the lateral hypothalamus in the self-stimulation test. Reviews on Clinical Pharmacology and Drug Therapy. 2018;16(2):37-41. doi: 10.17816/RCF16237-41).


2005 ◽  
Vol 289 (4) ◽  
pp. H1448-H1455 ◽  
Author(s):  
Ying Hu ◽  
S. V. Penelope Jones ◽  
Wolfgang H. Dillmann

Hyperthyroidism has been associated with atrial fibrillation (AF); however, hyperthyroidism-induced ion channel changes that may predispose to AF have not been fully elucidated. To understand the electrophysiological changes that occur in left and right atria with hyperthyroidism, the patch-clamp technique was used to compare action potential duration (APD) and whole cell currents in myocytes from left and right atria from both control and hyperthyroid mice. Additionally, RNase protection assays and immunoblotting were performed to evaluate the mRNA and protein expression levels of K+ channel α-subunits in left and right atria. The results showed that 1) in control mice, the APD was shorter and the ultra-rapid delayed rectifier K+ conductance ( IKur) and the sustained delayed rectifier K+ conductance ( Iss) were larger in the left than in the right atrium; also, mRNA and protein expression levels of Kv1.5 and Kv2.1 were higher in the left atrium; 2) in hyperthyroid mice, the APD was shortened and IKur and Iss were increased in both left and right atrial myocytes, and the protein expression levels of Kv1.5 and Kv2.1 were increased significantly in both atria; and 3) the influence of hyperthyroidism on APD and delayed rectifier K+ currents was more prominent in right than in left atrium, which minimized the interatrial APD difference. In conclusion, hyperthyroidism resulted in more significant APD shortening and greater delayed rectifier K+ current increases in the right vs. the left atrium, which can contribute to the propensity for atrial arrhythmia in hyperthyroid heart.


1984 ◽  
Vol 56 (5) ◽  
pp. 1289-1293 ◽  
Author(s):  
E. M. Baile ◽  
R. K. Albert ◽  
W. Kirk ◽  
S. Lakshaminarayan ◽  
B. J. Wiggs ◽  
...  

Positive end-expiratory pressure (PEEP) increases pulmonary vascular resistance, but its effect on the bronchial circulation is unknown. We have compared two techniques for measuring bronchial blood flow in anesthetized, open-chest, ventilated dogs at varying levels of PEEP. Bronchial blood flow ( Qbr ) to the left lower lobe (LLL) and trachea was measured with radiolabeled microspheres. Total Qbr was partitioned into tracheal, bronchial, and parenchymal fractions. We also measured the bronchopulmonary anastomotic flow ( Qbra ) by attaching cannulas from the lobar pulmonary artery and vein to reservoirs, interrupting the LLL pulmonary blood flow and collecting the flow going into the reservoirs. We measured Qbr and Qbra in 10 animals ventilated with varying levels of PEEP (3, 10, and 15 cmH2O) applied randomly. Pulmonary venous pressure was kept at 0 cmH2O. There was no difference observed between Qbr and Qbra at PEEP 3 and 10 cmH2O, but at PEEP 15 cmH2O, Qbr was greater than Qbra , suggesting that at low left atrial pressures bronchial blood flow drains mainly to the left atrium, whereas at elevated alveolar pressures a larger fraction empties into the right side of the heart. PEEP decreased LLL Qbr and Qbra (P less than 0.01). That fraction of Qbr going to the trachea did not change with PEEP. However, the bronchial and parenchymal fractions decreased.


2021 ◽  
pp. 1-3
Author(s):  
Claire Bertail-Galoin

Abstract A fistula between the pulmonary artery and the left atrium is a rare entity and its diagnosis is uncommon in the neonatal period. There are more reported surgical treatments in the literature than with a transcatheter closure. We report the case of a prenatal diagnosis of a large fistula between the right pulmonary artery and the left atrium with successful transcatheter closure with an Amplatzer duct occluder II 6/4 mm.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sanda Iacobas ◽  
Bogdan Amuzescu ◽  
Dumitru A. Iacobas

AbstractMyocardium transcriptomes of left and right atria and ventricles from four adult male C57Bl/6j mice were profiled with Agilent microarrays to identify the differences responsible for the distinct functional roles of the four heart chambers. Female mice were not investigated owing to their transcriptome dependence on the estrous cycle phase. Out of the quantified 16,886 unigenes, 15.76% on the left side and 16.5% on the right side exhibited differential expression between the atrium and the ventricle, while 5.8% of genes were differently expressed between the two atria and only 1.2% between the two ventricles. The study revealed also chamber differences in gene expression control and coordination. We analyzed ion channels and transporters, and genes within the cardiac muscle contraction, oxidative phosphorylation, glycolysis/gluconeogenesis, calcium and adrenergic signaling pathways. Interestingly, while expression of Ank2 oscillates in phase with all 27 quantified binding partners in the left ventricle, the percentage of in-phase oscillating partners of Ank2 is 15% and 37% in the left and right atria and 74% in the right ventricle. The analysis indicated high interventricular synchrony of the ion channels expressions and the substantially lower synchrony between the two atria and between the atrium and the ventricle from the same side.


1993 ◽  
Vol 113 (2) ◽  
pp. 146-151 ◽  
Author(s):  
Tian-Ying Ren ◽  
E. Laurikainen ◽  
W. S. Quirk ◽  
J. M. Miller ◽  
A. L. Nuttall

2001 ◽  
Vol 91 (4) ◽  
pp. 1713-1722 ◽  
Author(s):  
Fadi Xu ◽  
Tongrong Zhou ◽  
Tonya Gibson ◽  
Donald T. Frazier

Electrical stimulation of the rostral fastigial nucleus (FNr) alters respiration via activation of local neurons. We hypothesized that this FNr-mediated respiratory response was dependent on the integrity of the nucleus gigantocellularis of the medulla (NGC). Electrical stimulation of the FNr in 15 anesthetized and tracheotomized spontaneously breathing rats significantly altered ventilation by 35.2 ± 11.0% ( P < 0.01) with the major effect being excitatory (78%). This respiratory response did not significantly differ from control after lesions of the NGC via bilateral microinjection of kainic or ibotenic acid (4.5 ± 1.9%; P > 0.05) but persisted in sham controls. Eight other rats, in which horseradish peroxidase (HRP) solution was previously microinjected into the left NGC, served as nonstimulation controls or were exposed to either 15-min repeated electrical stimulation of the right FNr or hypercapnia for 90 min. Histochemical and immunocytochemical data showed that the right FNr contained clustered HRP-labeled neurons, most of which were double labeled with c-Fos immunoreactivity in both electrically and CO2-stimulated rats. We conclude that the NGC receives monosynaptic FNr inputs and is required for fully expressing FNr-mediated respiratory responses.


Sign in / Sign up

Export Citation Format

Share Document