scholarly journals MOTOR NEURONES OF THE CRAYFISH WALKING SYSTEM POSSESS TEA+-REVEALED REGENERATIVE ELECTRICAL PROPERTIES

1994 ◽  
Vol 188 (1) ◽  
pp. 339-345
Author(s):  
D Cattaert ◽  
A Araque ◽  
W Buno ◽  
F Clarac

In crustaceans, some motor neurones (MNs) have been shown to be part of the central pattern generator in the stomatogastric system (Harris-Warrick et al. 1992; Moulins, 1990), the swimmeret system (Heitler, 1978) or the walking system (Chrachri and Clarac, 1990). These MNs induce changes in the central rhythm when depolarized and are conditional oscillators in the stomatogastric ganglion. Moreover, in the walking system, rhythmic activity can be triggered by muscarinic cholinergic agonists (Chrachri and Clarac, 1987). We have recently analyzed the role of muscarinic receptors in crayfish walking leg MNs (D. Cattaert and A. Araque, in preparation) and demonstrated that oxotremorine, a muscarinic agonist, evoked long-lasting depolarizing responses associated with an increased input resistance. The outward current blocked by oxotremorine is likely to be carried by K+, as is the case for the M current (IM) in vertebrates (Brown and Adams, 1980). In most neurones, K+ conductances play a principal role in maintaining the membrane potential at rest: for example, IM is active at the resting membrane potential, thus contributing to its maintenance, and the 'delayed-rectifier' (IK) assists the fast repolarization after an action potential. Some K+ conductances are Ca2+-dependent (IK,Ca) and are activated by an increase in internal Ca2+ concentration. In such cases, Ca2+ currents may result in hyperpolarization of the neurone through activation of IK,Ca. In opposition to these K+ currents, the direct effect of Na+ and Ca2+ conductances is to depolarize the neurone. For example, the persistant Na+ current (INap) that is responsible for the slow subthreshold depolarization termed slow pre-potentials (Gestrelius et al. 1983; Leung and Yim, 1991) participates in the formation of pacemaker depolarization (Barrio et al. 1991) and generates plateau-type responses in control conditions (Barrio et al. 1991; Llinas and Sugimori, 1980). Similarly Ca2+ or non-specific (Na+/Ca2+) conductances generate such events in Aplysia californica burster neurones (Adams and Benson, 1985), crustacean cardiac ganglion (Tazaki and Cooke, 1990), insect neurones (Hancox and Pitman, 1991) and crustacean stomatogastric ganglion (Kiehn and Harris-Warrick, 1992). Since crustacean MNs can participate in rhythm production, such depolarizing conductances may exist in most of them and may contribute to the long-lasting MN depolarizations and spike bursts present during locomotion.

2010 ◽  
Vol 299 (5) ◽  
pp. C1180-C1194 ◽  
Author(s):  
R. J. Large ◽  
M. A. Hollywood ◽  
G. P. Sergeant ◽  
K. D. Thornbury ◽  
S. Bourke ◽  
...  

Hyaluronan, a joint lubricant and regulator of synovial fluid content, is secreted by fibroblast-like synoviocytes lining the joint cavity, and secretion is greatly stimulated by Ca2+-dependent protein kinase C. This study aimed to define synoviocyte membrane currents and channels that may influence synoviocyte Ca2+ dynamics. Resting membrane potential ranged from −30 mV to −66 mV (mean −45 ± 8.60 mV, n = 40). Input resistance ranged from 0.54 GΩ to 2.6 GΩ (mean 1.28 ± 0.57 GΩ; ν = 33). Cell capacitance averaged 97.97 ± 5.93 pF. Voltage clamp using Cs+ pipette solution yielded a transient inward current that disappeared in Ca2+-free solutions and was blocked by 1 μM nifedipine, indicating an L-type calcium current. The current was increased fourfold by the calcium channel activator FPL 64176 (300 nM). Using K+ pipette solution, depolarizing steps positive to −40 mV evoked an outward current that showed kinetics and voltage dependence of activation and inactivation typical of the delayed rectifier potassium current. This was blocked by the nonspecific delayed rectifier blocker 4-aminopyridine. The synoviocytes expressed mRNA for four Kv1 subtypes (Kv1.1, Kv1.4, Kv1.5, and Kv1.6). Correolide (1 μM), margatoxin (100 nM), and α-dendrotoxin block these Kv1 subtypes, and all of these drugs significantly reduced synoviocyte outward current. The current was blocked most effectively by 50 nM κ-dendrotoxin, which is specific for channels containing a Kv1.1 subunit, indicating that Kv1.1 is critical, either as a homomultimeric channel or as a component of a heteromultimeric Kv1 channel. When 50 nM κ-dendrotoxin was added to current-clamped synoviocytes, the cells depolarized by >20 mV and this was accompanied by an increase in intracellular calcium concentration. Similarly, depolarization of the cells with high external potassium solution caused an increase in intracellular calcium, and this effect was greatly reduced by 1 μM nifedipine. In conclusion, fibroblast-like synoviocytes cultured from the inner synovium of the rabbit exhibit voltage-dependent inward and outward currents, including Ca2+ currents. They thus express ion channels regulating membrane Ca2+ permeability and electrochemical gradient. Since Ca2+-dependent kinases are major regulators of synovial hyaluronan secretion, the synoviocyte ion channels are likely to be important in the regulation of hyaluronan secretion.


1992 ◽  
Vol 67 (2) ◽  
pp. 341-349 ◽  
Author(s):  
J. Golowasch ◽  
F. Buchholtz ◽  
I. R. Epstein ◽  
E. Marder

1. The behavior of the mathematical model for the lateral pyloric (LP) neuron of the crustacean stomatogastric ganglion (STG) developed in the previous paper was further studied. 2. The action of proctolin, a neuromodulatory peptide that acts directly on the LP neuron, was modeled. The effect of the proctolin-activated current (iproc) on the model neuron mimics the effects of proctolin on the isolated biological LP neuron. The depolarization and increased frequency of firing seen when iproc is activated are associated with changes in the relative contributions of the delayed rectifier (id) and the Ca(2+)-activated outward current (io(Ca] to the repolarization phase of the action potential. 3. The effects of turning off the A-current (iA) in the model were compared with those obtained by pharmacologically blocking iA in the biological neuron. iA appears to regulate action-potential frequency as well as postinhibitory rebound activity. 4. The role of iA on the rhythmic activity of the cell was studied by modifying several of its parameters while periodically activating a simulated synaptically activated conductance, isyn. 5. The effects of manipulations of the maximal conductances (g) for id and io(Ca) were studied. id strongly influences action-potential frequency, whereas io(Ca) strongly influences action-potential duration. 6. Modifications of the maximal conductance of the inward Ca2+ current (iCa) were compared with the effects of blocking iCa in the real cell. 7. The role of the hyperpolarization-activated inward current (ih) during ongoing rhythmic activity was assessed by periodically activating isyn while modifying ih.


2002 ◽  
Vol 88 (2) ◽  
pp. 869-878 ◽  
Author(s):  
Marcel de Jeu ◽  
Alwin Geurtsen ◽  
Cyriel Pennartz

A Ba2+-sensitive K+ current was studied in neurons of the suprachiasmatic nucleus (SCN) using the whole cell patch-clamp technique in acutely prepared brain slices. This Ba2+-sensitive K+ current was found in approximately 90% of the SCN neurons and was uniformly distributed across the SCN. Current-clamp studies revealed that Ba2+ (500 μM) reversibly depolarized the membrane potential by 6.7 ± 1.3 mV ( n = 22) and concomitantly Ba2+ induced an increase in the spontaneous firing rate of 0.8 ± 0.2 Hz ( n = 12). The Ba2+-evoked depolarizations did not depend on firing activity or spike dependent synaptic transmission. No significant day/night difference in the hyperpolarizing contribution to the resting membrane potential of the present Ba2+-sensitive current was observed. Voltage-clamp experiments showed that Ba2+ (500 μM) reduced a fast-activating, voltage-dependent K+ current. This current was activated at levels below firing threshold and exhibited outward rectification. The Ba2+-sensitive K+ current was strongly reduced by tetraethylammonium (TEA; 20 and 60 mM) but was insensitive to 4-aminopyridine (4-AP; 5 mM) and quinine (100 μM). A component of Ba2+-sensitive K+ current remaining in the presence of TEA exhibited no clear voltage dependence and is less likely to contribute to the resting membrane potential. The voltage dependence, kinetics and pharmacological properties of the Ba2+- and TEA-sensitive K+ current make it unlikely that this current is a delayed rectifier, Ca2+-activated K+ current, ATP-sensitive K+ current, M-current or K+ inward rectifier. Our data are consistent with the Ba2+- and TEA-sensitive K+ current in SCN neurons being an outward rectifying K+ current of a novel identity or belonging to a known family of K+ channels with related properties. Regardless of its precise molecular identity, the current appears to exert a significant hyperpolarizing effect on the resting potential of SCN neurons.


1989 ◽  
Vol 61 (3) ◽  
pp. 607-620 ◽  
Author(s):  
B. Sutor ◽  
J. J. Hablitz

1. To investigate excitatory postsynaptic potentials (EPSPs), intracellular recordings were performed in layer II/III neurons of the rat medial frontal cortex. The average resting membrane potential of the neurons was more than -75 mV and their average input resistance was greater than 20 M omega. The amplitudes of the action potentials evoked by injection of depolarizing current pulses were greater than 100 mV. The electrophysiological properties of the neurons recorded were similar to those of regular-spiking pyramidal cells. 2. Current-voltage relationships, determined by injecting inward and outward current pulses, displayed considerable inward rectification in both the depolarizing and hyperpolarizing directions. The steady-state input resistance increased with depolarization and decreased with hyperpolarization, concomitant with increases and decreases, respectively, in the membrane time constant. 3. Postsynaptic potentials were evoked by electrical stimulation via a bipolar electrode positioned in layer IV of the neocortex. Stimulus-response relationships, determined by gradually increasing the stimulus intensity, were consistent among the population of neurons examined. A short-latency EPSP [early EPSP (eEPSP)] was the response with the lowest threshold. Amplitudes of the eEPSP ranged from 4 to 8 mV. Following a hyperpolarization of the membrane potential, the amplitude of the eEPSP decreased. Upon depolarization, a slight increase in amplitude and duration was observed, accompanied by a significant increase in time to peak. 4. The membrane current underlying the eEPSP (eEPSC) was measured using the single-electrode voltage-clamp method. The amplitude of the eEPSC was apparently independent of the membrane potential in 8 of 12 neurons tested. In the other 4 neurons, the amplitude of the eEPSC increased with hyperpolarization and decreased with depolarization. 5. Higher stimulus intensities evoked, in addition to the eEPSP, a delayed EPSP [late EPSP (lEPSP)] in greater than 90% of the neurons tested. The amplitude of the lEPSP ranged from 12 to 20 mV, and the latency varied between 20 and 60 ms. The amplitude of the lEPSP varied with membrane potential, decreasing with depolarization and increasing following hyperpolarization. The membrane current underlying the lEPSP (lEPSC) displayed a similar voltage dependence. 6. At stimulus intensities that led to the activation of inhibitory postsynaptic potentials (IPSPs), the lEPSP was no longer observed.(ABSTRACT TRUNCATED AT 400 WORDS)


2003 ◽  
Vol 284 (4) ◽  
pp. C839-C847 ◽  
Author(s):  
Sok Han Kang ◽  
Pieter Vanden Berghe ◽  
Terence K. Smith

Whole cell patch-clamp recordings were made from cultured myenteric neurons taken from murine proximal colon. The micropipette contained Cs+ to remove K+ currents. Depolarization elicited a slowly activating time-dependent outward current ( I tdo), whereas repolarization was followed by a slowly deactivating tail current ( I tail). I tdo and I tail were present in ∼70% of neurons. We identified these currents as Cl− currents ( I Cl), because changing the transmembrane Cl− gradient altered the measured reversal potential ( E rev) of both I tdo and I tail with that for I tailshifted close to the calculated Cl− equilibrium potential ( E Cl). I Cl are Ca2+-activated Cl− current [ I Cl(Ca)] because they were Ca2+dependent. E Cl, which was measured from the E rev of I Cl(Ca) using a gramicidin perforated patch, was −33 mV. This value is more positive than the resting membrane potential (−56.3 ± 2.7 mV), suggesting myenteric neurons accumulate intracellular Cl−. ω-Conotoxin GIVA [0.3 μM; N-type Ca2+ channel blocker] and niflumic acid [10 μM; known I Cl(Ca) blocker], decreased the I Cl(Ca). In conclusion, these neurons have I Cl(Ca) that are activated by Ca2+entry through N-type Ca2+ channels. These currents likely regulate postspike frequency adaptation.


2021 ◽  
Vol 61 (1) ◽  
pp. 381-400
Author(s):  
Emely Thompson ◽  
Jodene Eldstrom ◽  
David Fedida

Kv7 channels (Kv7.1–7.5) are voltage-gated K+ channels that can be modulated by five β-subunits (KCNE1–5). Kv7.1-KCNE1 channels produce the slow-delayed rectifying K+ current, IKs, which is important during the repolarization phase of the cardiac action potential. Kv7.2–7.5 are predominantly neuronally expressed and constitute the muscarinic M-current and control the resting membrane potential in neurons. Kv7.1 produces drastically different currents as a result of modulation by KCNE subunits. This flexibility allows the Kv7.1 channel to have many roles depending on location and assembly partners. The pharmacological sensitivity of Kv7.1 channels differs from that of Kv7.2–7.5 and is largely dependent upon the number of β-subunits present in the channel complex. As a result, the development of pharmaceuticals targeting Kv7.1 is problematic. This review discusses the roles and the mechanisms by which different signaling pathways affect Kv7.1 and KCNE channels and could potentially provide different ways of targeting the channel.


1998 ◽  
Vol 79 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Gytis Svirskis ◽  
Jørn Hounsgaard

Svirskis, Gytis and Jørn Hounsgaard. Transmitter regulation of plateau properties in turtle motoneurons. J. Neurophysiol. 79: 45–50, 1998. In motoneurons, generation of plateau potentials is promoted by modulators that block potassium channels. In voltage-clamp experiments with triangular voltage ramp commands, we show that cis-(±)-1-aminocyclopentane-1,3-dicarboxylic acid ( cis-ACPD) and muscarine promote the generation of plateau potentials by increasing the dihydropyridine sensitive inward current, by increasing the input resistance, and by depolarizing the resting membrane potential. Type I metabotropic glutamate receptors (mGluR I) mediate the effects of cis-ACPD. Baclofen suppresses generation of plateau potentials by decreasing the dihydropyridine sensitive inward current, by decreasing the input resistance, and by hyperpolarizing the resting membrane potential. These results suggest that membrane properties of motoneurons are continuously modulated by synaptic activity in ways that may have profound effects on synaptic integration and pattern generation.


1996 ◽  
Vol 271 (2) ◽  
pp. C658-C665 ◽  
Author(s):  
W. H. Zhu ◽  
L. Conforti ◽  
M. F. Czyzyk-Krzeska ◽  
D. E. Millhorn

The effects of hypoxia on K+ current (IK), resting membrane potential, and cytosolic free Ca2+ in rat pheochromocytoma (PC-12) cells were studied. Whole cell voltage- and current-clamp experiments were performed to measure IK and membrane potential, respectively. Cytosolic free Ca2+ level was measured using the Ca(2+)-sensitive fluorescent dye fura 2. Depolarizing voltage steps to +50 mV from a holding potential of -90 mV elicited a slowly inactivating, tetraethylammonium chloride-sensitive, and Ca(2+)-insensitive IK that was reversibly inhibited by reduced O2 tension. Graded reduction in PO2 (from 150 to 0 mmHg) induced a graded inhibition of O2-sensitive IK [IK(O2)] up to 46% at 0 mmHg. Moreover, hypoxia induced a 19-mV membrane depolarization and a twofold increase in cytosolic free Ca2+. In Ca(2+)-free condition, inhibition of IK(O2) induced an 8-mV depolarization, suggesting that inhibition of IK(O2) was responsible for initiating depolarization. The effect of reduced PO2 on the current-voltage relationship showed a reduction of outward current and a 14-mV shift in the reversal potential comparable with the amount of depolarization measured in current clamp experiments. Neither Ca(2+)-activated IK nor inwardly rectifying IK are responsible for the hypoxia-induced depolarization. In conclusion, PC-12 cells express an IK(O2), inhibition of which leads to membrane depolarization and increased intracellular Ca2+, making the PC-12 clonal cell line a useful model for studying the molecular and biophysical mechanisms that mediate O2 chemosensitivity.


1975 ◽  
Vol 38 (1) ◽  
pp. 33-52 ◽  
Author(s):  
K. G. Pearson ◽  
C. R. Fourtner

Intracellular recordings were made from the neurites of interneurons and motoneurons in the metathoracic ganglion of the cockroach, Periplaneta americana. Many neurons were penetrated which failed to produce action potentials on the application of large depolarizing currents. Nevertheless, some of them strongly excited and/or inhibited slow motoneurons innervating leg musculature, even with weak depolariziing musculature, even with weak depolarizing currents. Cobalt-sulfide-straining of these nonspiking neurons showed them to be interneurons with their neurites contained entirely within the metathoracic ganglion. Two further characteristics of these interneurons were rapid spontaneous fluctuations in membrane potential and a low resting membrane potential. One nonspiking neuron, interneuron I, when depolarized caused a strong excitation of the set of slow levator motoneurons which discharge in bursts during stepping movements of the metathoracic leg. During rhythmic leg movements the membrane potential of interneuron I oscillated with the depolarizing phases occurring at the same time as bursts of activity in the levator motorneurons. No spiking or any other nonspiking neuron was penetrated which could excite these levator motoneurons. From all these observations we conclude that oscillations in the membrane potential of interneuron I are entirely responsible for producing the levator bursts, and thus for producing stepping movements in a walking animal. During rhythmic leg movements, bursts of activity in levator and depressor motoneurons are initiated by slow graded depolarizations. The similarity of the synaptic activity in these two types of motoneurons suggests that burst activity in the depressor motoneurons is also produced by rhythmic activity in nonspiking interneurons. The fact that no spiking neuron was found to excite the depressor motoneurons supports this conclusion. Interneuron I is also an element of the rhythm-generating system, since short depolarizing pulses applied to it during rhythmic activity could reset the thythm. Long-duration current pulses applied to interneuron I in a quiescent animal did not produce rhythmic activity. This observation, together with the finding that during rhythmic activity the slow depolarizations in interneuron I are usually terminated by IPSPs, suggests that interneuron I alone does not generate the rhythm. No spiking interneurons have yet been enccountered which influence the activity in levator motoneurons. Thus, we conclude that the rhythm is generated in a network of nonspiking interneurons. The cellular mechanisms for generating the oscillations in this network are unknown. Continued.


Sign in / Sign up

Export Citation Format

Share Document