Influence of the naturally occurring polyamines spermine, spermidine and putrescine on the kinetic properties of acetylcholinesterase. Comparative studies with the acetylcholinesterases from the central nervous system of Manduca sexta and of the synaptic plasma membrane of rat brain

1979 ◽  
Vol 10 (2) ◽  
pp. 133-141 ◽  
Author(s):  
Horst W. Peter ◽  
Andreas Gies ◽  
Martina Neumeier ◽  
Regina Schädler ◽  
Irmhild Wegener
1989 ◽  
Vol 147 (1) ◽  
pp. 457-470 ◽  
Author(s):  
JAMES W. TRUMAN ◽  
PHILIP F. COPENHAVER

Larval and pupal ecdyses of the moth Manduca sexta are triggered by eclosion hormone (EH) released from the ventral nervous system. The major store of EH activity in the latter resides in the proctodeal nerves that extend along the larval hindgut. At pupal ecdysis, the proctodeal nerves show a 90% depletion of stored activity, suggesting that they are the major release site for the circulating EH that causes ecdysis. Surgical experiments involving the transection of the nerve cord or removal of parts of the brain showed that the proctodeal nerve activity originates from the brain. Retrograde and anterograde cobalt fills and immunocytochemistry using antibodies against EH revealed two pairs of neurons that reside in the ventromedial region of the brain and whose axons travel ipsilaterally along the length of the central nervous system (CNS) and project into the proctodeal nerve, where they show varicose release sites. These neurons constitute a novel neuroendocrine pathway in insects which appears to be dedicated solely to the release of EH.


1978 ◽  
Vol 75 (1) ◽  
pp. 123-132
Author(s):  
ANN E. KAMMER ◽  
D. L. DAHLMAN ◽  
GERALD A. ROSENTHAL

Injection of L-canavanine, a naturally occurring arginine analogue, and of its metabolic derivative, L-canaline, induced almost continuous motor activity in adult tobacco hornworms, Manduca sexta (L.). Initially the moths flew normally, but after a time interval that depended both on the amino acid and on the dose (1-l45/μmol/g fresh weight) the moths became disorientated and muscle activity was less patterned. Canaline produced its initial effects 12-30 min after injection, whereas activity in response to canavanine began after a delay of 1-2 h. Canaline (derived from canavanine by an arginase-mediated hydrolytic cleavage) is probably the biologically active factor. Canaline did not affect axonal conduction of action potentials nor the activity of mechanoreceptors on the forewing. Canaline (22μmol/g fresh weight) prolonged the postsynaptic potential of flight muscle fibres, but after 20-40 min. the electrical activity of muscle fibres was normal. The results show that canaline alters the activity of the central nervous system of adult M. sexta, but its mode of action is unknown.


1995 ◽  
Vol 198 (6) ◽  
pp. 1307-1311
Author(s):  
J J Milde ◽  
R Ziegler ◽  
M Wallstein

A simple preparation designed to screen and compare the central action of putative neuroactive agents in the moth Manduca sexta is described. This approach combines microinjections into the central nervous system with myograms recorded from a pair of spontaneously active mesothoracic muscles. Pressure injection of either octopamine or Manduca adipokinetic hormone (M-AKH) into the mesothoracic neuropile increases the monitored motor activity. Under the conditions used, the excitatory effects of M-AKH exceed those of the potent neuromodulator octopamine. This suggests that M-AKH plays a role in the central nervous system in addition to its known metabolic functions and supports recent evidence that neuropeptides in insects can be multifunctional.


Sign in / Sign up

Export Citation Format

Share Document