Amino-acid-dependent modulation of amino acid transport in Xenopus laevis oocytes.

1996 ◽  
Vol 199 (4) ◽  
pp. 923-931 ◽  
Author(s):  
P M Taylor ◽  
S Kaur ◽  
B Mackenzie ◽  
G J Peter

We have measured rates of uptake of arginine, glutamine, glutamate, serine, phenylalanine and glycine in Xenopus laevis oocytes cultured for periods of up to 24h in saline in the presence or absence of a mixture of 20 amino acids at concentrations approximating those in Xenopus plasma. Amino acid supplementation increased the total intracellular amino acid concentration from 8.2 to 18.4 nmol per oocyte. Specific Na(+)-dependent amino acid transporters (systems B0,+, Xag-) exhibit 'adaptive regulation' (up-regulation during amino acid deprivation and down-regulation during amino acid supplementation). Na(+)-independent transporters of glutamate, glutamine and glycine (including system asc) display an opposite modulation in activity, which may help to combat amino-acid-induced oxidative stress by increasing the supply of glutathione precursors. Single amino acids at physiological plasma concentrations (0.47 mmol l-1 L-alanine, 0.08 mmol l-1 L-glutamate) mimicked at least some effects of the amino acid mixture. The mechanisms of transport modulation do not appear to include trans-amino acid or membrane potential effects and, in the case of Na(+)-independent transport, are independent of protein or mRNA synthesis. Furthermore, activation of protein kinase C by phorbol 12-myristate 13-acetate did not significantly affect endogenous glutamine and glutamate transport. The Xenopus oocyte appears to possess endogenous signalling mechanisms for selectively modulating the activity of amino acid transport proteins expressed in its surface membranes, a factor for consideration when using oocytes as an expression system for structure-function studies of cloned amino acid transporters.

1995 ◽  
Vol 268 (6) ◽  
pp. C1321-C1331 ◽  
Author(s):  
A. J. Moe

Normal fetal growth and development depend on a continuous supply of amino acids from the mother to the fetus. The placenta is responsible for the transfer of amino acids between the two circulations. The human placenta is hemomonochorial, meaning that the maternal and fetal circulations are separated by a single layer of polarized epithelium called the syncytiotrophoblast, which is in direct contact with maternal blood. Transport proteins located in the microvillous and basal membranes of the syncytiotrophoblast are the principal mechanism for transfer from maternal blood to fetal blood. Knowledge of the function and regulation of syncytiotrophoblast amino acid transporters is of great importance in understanding the mechanism of placental transport and potentially improving fetal and newborn outcomes. The development of methods for the isolation of microvillous and basal membrane vesicles from human placenta over the past two decades has contributed greatly to this understanding. Now a primary cultured trophoblast model is available to study amino acid transport and regulation as the cells differentiate. The types of amino acid transporters and their distribution between the syncytiotrophoblast microvillous and basal membranes are somewhat unique compared with other polarized epithelia. These differences may reflect the unusual circumstance of this epithelium that is exposed to blood on both sides. The current state of knowledge as to the types of transport systems present in syncytiotrophoblast, their regulation, and the effects of maternal consumption of drugs on transport are discussed.


2002 ◽  
Vol 364 (3) ◽  
pp. 767-775 ◽  
Author(s):  
Sabine WOLF ◽  
Annette JANZEN ◽  
Nicole VÉKONY ◽  
Ursula MARTINÉ ◽  
Dennis STRAND ◽  
...  

Member 4 of human solute carrier family 7 (SLC7A4) exhibits significant sequence homology with the SLC7 subfamily of human cationic amino acid transporters (hCATs) [Sperandeo, Borsani, Incerti, Zollo, Rossi, Zuffardi, Castaldo, Taglialatela, Andria and Sebastio (1998) Genomics 49, 230–236]. It is therefore often referred to as hCAT-4 even though no convincing transport activity has been shown for this protein. We expressed SLC7A4 in Xenopus laevis oocytes, but could not detect any transport activity for cationic, neutral or anionic amino acids or for the polyamine putrescine. In addition, human glioblastoma cells stably overexpressing a fusion protein between SLC7A4 and the enhanced green fluorescent protein (EGFP) did not exhibit an increased transport activity for l-arginine. The lack of transport activity was not due to a lack of SLC7A4 protein expression in the plasma membrane, as in both cell types SLC7A4-EGFP exhibited a similar subcellular localization and level of protein expression as functional hCAT-EGFP proteins. The expression of SLC7A4 can be induced in NT2 teratocarcinoma cells by treatment with retinoic acid. However, also for this endogenously expressed SLC7A4, we could not detect any transport activity for l-arginine. Our data demonstrate that the expression of SLC7A4 in the plasma membrane is not sufficient to induce an amino acid transport activity in X. laevis oocytes or human cells. Therefore, SLC7A4 is either not an amino acid transporter or it needs additional (protein) factor(s) to be functional.


2001 ◽  
Vol 281 (6) ◽  
pp. C1757-C1768 ◽  
Author(s):  
Takeo Nakanishi ◽  
Ramesh Kekuda ◽  
You-Jun Fei ◽  
Takahiro Hatanaka ◽  
Mitsuru Sugawara ◽  
...  

We have cloned a new subtype of the amino acid transport system N2 (SN2 or second subtype of system N) from rat brain. Rat SN2 consists of 471 amino acids and belongs to the recently identified glutamine transporter gene family that consists of system N and system A. Rat SN2 exhibits 63% identity with rat SN1. It also shows considerable sequence identity (50–56%) with the members of the amino acid transporter A subfamily. In the rat, SN2 mRNA is most abundant in the liver but is detectable in the brain, lung, stomach, kidney, testis, and spleen. When expressed in Xenopus laevis oocytes and in mammalian cells, rat SN2 mediates Na+-dependent transport of several neutral amino acids, including glycine, asparagine, alanine, serine, glutamine, and histidine. The transport process is electrogenic, Li+tolerant, and pH sensitive. The transport mechanism involves the influx of Na+ and amino acids coupled to the efflux of H+, resulting in intracellular alkalization. Proline, α-(methylamino)isobutyric acid, and anionic and cationic amino acids are not recognized by rat SN2.


2005 ◽  
Vol 386 (3) ◽  
pp. 417-422 ◽  
Author(s):  
Sonja KOWALCZUK ◽  
Angelika BRÖER ◽  
Michael MUNZINGER ◽  
Nadine TIETZE ◽  
Karin KLINGEL ◽  
...  

Neurotransmitter transporters of the SLC6 family play an important role in the removal of neurotransmitters in brain tissue and in amino acid transport in epithelial cells. Here we demonstrate that the mouse homologue of slc6a20 has all properties of the long-sought IMINO system. The mouse has two homologues corresponding to the single human SLC6A20 gene: these have been named XT3 and XT3s1. Expression of mouse XT3s1, but not XT3, in Xenopus laevis oocytes induced an electrogenic Na+-and-Cl−-dependent transporter for proline, hydroxyproline, betaine, N-methylaminoisobutyric acid and pipecolic acid. Expression of XT3s1 was found in brain, kidney, small intestine, thymus, spleen and lung, whereas XT3 prevailed in kidney and lung. Accordingly we suggest that the two homologues be termed ‘XT3s1 IMINOB’ and ‘XT3 IMINOK’ to indicate the tissue expression of the two genes.


1973 ◽  
Vol 45 (3) ◽  
pp. 291-299 ◽  
Author(s):  
D. B. A. Silk ◽  
D. Perrett ◽  
M. L. Clark

1. A double lumen perfusion technique has been used in man to study the absorption of the two neutral amino acids glycine and l-alanine from the two dipeptides, l-alanylglycine and glycyl-l-alanine and from an equivalent amino acid mixture. 2. Glycine was absorbed faster from the dipeptides than from the equivalent amino acid mixture, and the difference in absorption rates of glycine and alanine seen when the equimolar mixture of the amino acids was perfused, was abolished when either dipeptide was perfused. This suggests that dipeptides are taken up by the mucosal cell by a mechanism independent of the amino acid-transport system. 3. The presence of free amino acids in the lumen during perfusion of both dipeptides suggests that hydrolysis occurs at some stage in the uptake process. Intraluminal hydrolysis was insufficient to account for the concentration of the amino acids seen, and their presence is thought to be due to hydrolysis of the dipeptides at the brush border. 4. It is suggested that these results confirm that at least two modes of peptide absorption occur simultaneously, namely, direct peptide uptake, and peptide hydrolysis with subsequent absorption of the released amino acids by the amino acid transport system.


1992 ◽  
Vol 267 (22) ◽  
pp. 15384-15390
Author(s):  
S Magagnin ◽  
J Bertran ◽  
A Werner ◽  
D Markovich ◽  
J Biber ◽  
...  

1996 ◽  
Vol 270 (6) ◽  
pp. C1647-C1655 ◽  
Author(s):  
G. Lin ◽  
J. I. McCormick ◽  
R. M. Johnstone

A mutated yeast cell line incapable of growth in minimal medium with proline as the sole nitrogen source was restored to normal growth by transfection with a cDNA from mouse Ehrlich cells. The cloned cDNA (E51) was found to be 90% homologous to gamma-actin. Immediately after transfection with E51 cDNA, both alpha-aminoisobutyric acid (AIB) and proline uptake in the mutated yeast were increased, particularly at pH 5. The expression of the same E51 cDNA also enhanced amino acid uptake in Xenopus laevis oocytes after injection into the Xenopus nuclei. A mutated mammalian lymphocyte cell line (GF-17), deficient in system A transport, also showed increased Na(+)-dependent transport after transfection with E51 cDNA. Whereas the mock transfected GF-17 cells failed to grow in the selection medium, the transfectants with E51 cDNA grew better than the untransfected cells. The data are consistent with the conclusion that expression of E51 cDNA can modify inactive, endogenous amino acid transporters, permitting substantial amino acid uptake in cells deficient in amino acid transporter(s) and permitting rapid cell growth. The data suggest that the gamma-actin-like protein coded for by E51 cDNA may play a significant regulatory role in amino acid transport.


2008 ◽  
Vol 88 (1) ◽  
pp. 249-286 ◽  
Author(s):  
Stefan Bröer

The transport of amino acids in kidney and intestine is critical for the supply of amino acids to all tissues and the homeostasis of plasma amino acid levels. This is illustrated by a number of inherited disorders affecting amino acid transport in epithelial cells, such as cystinuria, lysinuric protein intolerance, Hartnup disorder, iminoglycinuria, dicarboxylic aminoaciduria, and some other less well-described disturbances of amino acid transport. The identification of most epithelial amino acid transporters over the past 15 years allows the definition of these disorders at the molecular level and provides a clear picture of the functional cooperation between transporters in the apical and basolateral membranes of mammalian epithelial cells. Transport of amino acids across the apical membrane not only makes use of sodium-dependent symporters, but also uses the proton-motive force and the gradient of other amino acids to efficiently absorb amino acids from the lumen. In the basolateral membrane, antiporters cooperate with facilitators to release amino acids without depleting cells of valuable nutrients. With very few exceptions, individual amino acids are transported by more than one transporter, providing backup capacity for absorption in the case of mutational inactivation of a transport system.


Sign in / Sign up

Export Citation Format

Share Document