scholarly journals Effect of reduced gravity on the preferred walk-run transition speed.

1997 ◽  
Vol 200 (4) ◽  
pp. 821-826 ◽  
Author(s):  
R Kram ◽  
A Domingo ◽  
D P Ferris

We investigated the effect of reduced gravity on the human walk-run gait transition speed and interpreted the results using an inverted-pendulum mechanical model. We simulated reduced gravity using an apparatus that applied a nearly constant upward force at the center of mass, and the subjects walked and ran on a motorized treadmill. In the inverted pendulum model for walking, gravity provides the centripetal force needed to keep the pendulum in contact with the ground. The ratio of the centripetal and gravitational forces (mv2/L)/(mg) reduces to the dimensionless Froude number (v2/gL). Applying this model to a walking human, m is body mass, v is forward velocity, L is leg length and g is gravity. In normal gravity, humans and other bipeds with different leg lengths all choose to switch from a walk to a run at different absolute speeds but at approximately the same Froude number (0.5). We found that, at lower levels of gravity, the walk-run transition occurred at progressively slower absolute speeds but at approximately the same Froude number. This supports the hypothesis that the walk-run transition is triggered by the dynamics of an inverted-pendulum system.

2017 ◽  
Vol 2 (9) ◽  
pp. 1-5
Author(s):  
Ghassan A. Sultan ◽  
Ziyad K. Farej

Double inverted pendulum (DIP) is a nonlinear, multivariable and unstable system. The inverted pendulum which continually moves toward an uncontrolled state represents a challenging control problem. The problem is to balance the pendulum vertically upward on a mobile platform that can move in only two directions (left or right) when it is offset from zero stat. The aim is to determine the control strategy that deliver better performance with respect to pendulum's angles and cart's position. A Linear-Quadratic-Regulator (LQR) technique for controlling the linearized system of double inverted pendulum model is presented. Simulation studies conducted in MATLAB environment show that the LQR controller are capable of controlling the multi output double inverted pendulum system. Also better performance results are obtained for controlling heavy driven part DIP system.


2018 ◽  
Vol 8 (8) ◽  
pp. 1257 ◽  
Author(s):  
Tianqi Yang ◽  
Weimin Zhang ◽  
Xuechao Chen ◽  
Zhangguo Yu ◽  
Libo Meng ◽  
...  

The most important feature of this paper is to transform the complex motion of robot turning into a simple translational motion, thus simplifying the dynamic model. Compared with the method that generates a center of mass (COM) trajectory directly by the inverted pendulum model, this method is more precise. The non-inertial reference is introduced in the turning walk. This method can translate the turning walk into a straight-line walk when the inertial forces act on the robot. The dynamics of the robot model, called linear inverted pendulum (LIP), are changed and improved dynamics are derived to make them apply to the turning walk model. Then, we expend the new LIP model and control the zero moment point (ZMP) to guarantee the stability of the unstable parts of this model in order to generate a stable COM trajectory. We present simulation results for the improved LIP dynamics and verify the stability of the robot turning.


In the coming decades, humanoid robots will play a rising role in society. The present article discusses their walking control and obstacle avoidance on uneven terrain using enhanced spring-loaded inverted pendulum model (ESLIP). The SLIP model is enhanced by tuning it with an adaptive particle swarm optimization (APSO) approach. It helps the humanoid robot to reach closer to the obstacles in order to optimize the turning angle to optimize the path length. The desired trajectory, along with the sensory data, is provided to the SLIP model, which creates compatible COM (center of mass) dynamics for stable walking. This output is fed to APSO as input, which adjusts the placement of the foot during interaction with uneven surfaces and obstacles. It provides an optimum turning angle for shunning the obstacles and ensures the shortest path length. Simulation has been carried out in a 3D simulator based on the proposed controller and SLIP controller in uneven terrain.


2019 ◽  
Vol 1 (28) ◽  
pp. 50-55
Author(s):  
Tan Thanh Nguyen

In this article, the author used the matlab software to simulate and then compared the results between the classical LQR (Linear Quadratic Regulator) controller and another method to adjust the matrix parameters toward optimization of the LQR controller. It is the GA (Genetic Algorithm) method to optimize the matrix of the LQR controller, and the results have  been verified on the nonlinear pendulum model. The Genetic Algorithm is a modern control algorithm, which is widely applied in research and practice. The main objective of this article is to use the GA algorithm in order to optimize the matrix parameters of LQR controller, whichcontrolled the position and angle of the nonlinear inverted pendulum at the stable balance point. The matlab-based simulating results showed that  the system has operated properly to the requirements and the output response has reached an equilibrium position of about 2.5 seconds.


Author(s):  
Ya-Fang Ho ◽  
Tzuu-Hseng S. Li ◽  
Ping-Huan Kuo ◽  
Yan-Ting Ye

AbstractThis paper presents a parameterized gait generator based on linear inverted pendulum model (LIPM) theory, which allows users to generate a natural gait pattern with desired step sizes. Five types of zero moment point (ZMP) components are proposed for formulating a natural ZMP reference, where ZMP moves continuously during single support phases instead of staying at a fixed point in the sagittal and lateral plane. The corresponding center of mass (CoM) trajectories for these components are derived by LIPM theory. To generate a parameterized gait pattern with user-defined parameters, a gait planning algorithm is proposed, which determines related coefficients and boundary conditions of the CoM trajectory for each step. The proposed parameterized gait generator also provides a concept for users to generate gait patterns with self-defined ZMP references by using different components. Finally, the feasibility of the proposed method is validated by the experimental results with a teen-sized humanoid robot, David, which won first place in the sprint event at the 20th Federation of International Robot-soccer Association (FIRA) RoboWorld Cup.


1998 ◽  
Vol 201 (21) ◽  
pp. 2935-2944 ◽  
Author(s):  
C R Lee ◽  
C T Farley

Walking is often modeled as an inverted pendulum system in which the center of mass vaults over the rigid stance limb. Running is modeled as a simple spring-mass system in which the center of mass bounces along on the compliant stance limb. In these models, differences in stance-limb behavior lead to nearly opposite patterns of vertical movements of the center of mass in the two gaits. Our goal was to quantify the importance of stance-limb behavior and other factors in determining the trajectory of the center of mass during walking and running. We collected kinematic and force platform data during human walking and running. Virtual stance-limb compression (i.e. reduction in the distance between the point of foot-ground contact and the center of mass during the first half of the stance phase) was only 26% lower for walking (0.091 m) than for running (0.123 m) at speeds near the gait transition speed. In spite of this relatively small difference, the center of mass moved upwards by 0.031 m during the first half of the stance phase during walking and moved downwards by 0.073 m during the first half of the stance phase during running. The most important reason for this difference was that the stance limb swept through a larger angle during walking (30.4 degrees) than during running (19.2 degrees). We conclude that stance-limb touchdown angle and virtual stance-limb compression both play important roles in determining the trajectory of the center of mass and whether a gait is a walk or a run.


2016 ◽  
Vol 851 ◽  
pp. 445-448 ◽  
Author(s):  
Yang Hua ◽  
Zi Jian Yang

Inverted pendulum control system is a complex, nonlinear, unstable system. This design on the basis of studying the law of motion of the inverted pendulum, build its trajectory mathematical model, using MATLAB simulation analysis, after understanding of inverted pendulum model, use k60 micro controller combined with PID algorithm gives the signal driven dc gear motor, and then to control the inverted pendulum system, used in the process of standing on your head swinging rod Angle encoder acquisition, processing, the Angle of swinging rod feedback on point of view, the direction of the angular velocity, the motor running direction, adjusting handstand pendulum rod by using PD algorithm, PI parameters to adjust motor speed, by double circuit PD/PI control scheme realizes the rotating arm swinging rod Angle and position closed loop control at the same time.


2016 ◽  
Vol 32 (5) ◽  
pp. 462-468 ◽  
Author(s):  
Yusuke Ikeda ◽  
Hiroshi Ichikawa ◽  
Rio Nara ◽  
Yasuhiro Baba ◽  
Yoshimitsu Shimoyama ◽  
...  

This study investigated factors that determine the velocity of the center of mass (CM) and flight distance from a track start to devise effective technical and physical training methods. Nine male and 5 female competitive swimmers participated in this study. Kinematics and ground reaction forces of the front and back legs were recorded using a video camera and force plates. The track start was modeled as an inverted pendulum system including a compliant leg, connecting the CM and front edge of the starting block. The increase in the horizontal velocity of the CM immediately after the start signal was closely correlated with the rotational component of the inverted pendulum. This rotational component at hands-off was significantly correlated with the average vertical force of the back plate from the start signal to hands-off (r = .967, P < .001). The flight distance / height was significantly correlated with the average vertical force of the front plate from the back foot-off to front foot-off (r = .783, P < .01). The results indicate that the legs on the starting block in the track start play a different role in the behavior of the inverted pendulum.


Sign in / Sign up

Export Citation Format

Share Document