Slow muscle power output of yellow- and silver-phase European eels (Anguilla anguilla L.): changes in muscle performance prior to migration

2001 ◽  
Vol 204 (7) ◽  
pp. 1369-1379 ◽  
Author(s):  
D.J. Ellerby ◽  
I.L. Spierts ◽  
J.D. Altringham

Eels swim in the anguilliform mode in which the majority of the body axis undulates to generate thrust. For this reason, muscle function has been hypothesised to be relatively uniform along the body axis relative to some other teleosts in which the caudal fin is the main site of thrust production. The European eel (Anguilla anguilla L.) has a complex life cycle involving a lengthy spawning migration. Prior to migration, there is a metamorphosis from a yellow (non-migratory) to a silver (migratory) life-history phase. The work loop technique was used to determine slow muscle power outputs in yellow- and silver-phase eels. Differences in muscle properties and power outputs were apparent between yellow- and silver-phase eels. The mass-specific power output of silver-phase slow muscle was greater than that of yellow-phase slow muscle. Maximum slow muscle power outputs under approximated in vivo conditions were 0.24 W kg(−)(1) in yellow-phase eel and 0.74 W kg(−)(1) in silver-phase eel. Power output peaked at cycle frequencies of 0.3-0.5 Hz in yellow-phase slow muscle and at 0.5-0.8 Hz in silver-phase slow muscle. The time from stimulus offset to 90 % relaxation was significantly greater in yellow- than in silver-phase eels. The time from stimulus onset to peak force was not significantly different between life-history stages or axial locations. Yellow-phase eels shifted to intermittent bursts of higher-frequency tailbeats at a lower swimming speed than silver-phase eels. This may indicate recruitment of fast muscle at low speeds in yellow-phase eels to compensate for a relatively lower slow muscle power output and operating frequency.

1998 ◽  
Vol 201 (10) ◽  
pp. 1505-1526 ◽  
Author(s):  
J M Wakeling ◽  
I A Johnston

Fast-starts associated with escape responses were filmed at the median habitat temperatures of six teleost fish: Notothenia coriiceps and Notothenia rossii (Antarctica), Myoxocephalus scorpius (North Sea), Scorpaena notata and Serranus cabrilla (Mediterranean) and Paracirrhites forsteri (Indo-West-Pacific Ocean). Methods are presented for estimating the spine positions for silhouettes of swimming fish. These methods were used to validate techniques for calculating kinematics and muscle dynamics during fast-starts. The starts from all species show common patterns, with waves of body curvature travelling from head to tail and increasing in amplitude. Cross-validation with sonomicrometry studies allowed gearing ratios between the red and white muscle to be calculated. Gearing ratios must decrease towards the tail with a corresponding change in muscle geometry, resulting in similar white muscle fibre strains in all the myotomes during the start. A work-loop technique was used to measure mean muscle power output at similar strain and shortening durations to those found in vivo. The fast Sc. notata myotomal fibres produced a mean muscle-mass-specific power of 142.7 W kg-1 at 20 degrees C. Velocity, acceleration and hydrodynamic power output increased both with the travelling rate of the wave of body curvature and with the habitat temperature. At all temperatures, the predicted mean muscle-mass-specific power outputs, as calculated from swimming sequences, were similar to the muscle power outputs measured from work-loop experiments.


1997 ◽  
Vol 200 (20) ◽  
pp. 2617-2627 ◽  
Author(s):  
J D Altringham ◽  
B A Block

It has been hypothesised that regional endothermy has evolved in the muscle of some tunas to enhance the locomotory performance of the fish by increasing muscle power output. Using the work loop technique, we have determined the relationship between cycle frequency and power output, over a range of temperatures, in isolated bundles of slow muscle fibres from the endothermic yellowfin tuna (Thunnus albacares) and its ectothermic relative the bonito (Sarda chiliensis). Power output in all preparations was highly temperature-dependent. A counter-current heat exchanger which could maintain a 10 degrees C temperature differential would typically double maximum muscle power output and the frequency at which maximum power is generated (fopt). The deep slow muscle of the tuna was able to operate at higher temperatures than slow muscle from the bonito, but was more sensitive to temperature change than more superficially located slow fibres from both tuna and bonito. This suggests that it has undergone some evolutionary specialisation for operation at higher, but relatively stable, temperatures. fopt of slow muscle was higher than the tailbeat frequency of undisturbed cruising tuna and, together with the high intrinsic power output of the slow muscle mass, suggests that cruising fish have a substantial slow muscle power reserve. This reserve should be sufficient to power significantly higher sustainable swimming speeds, presumably at lower energetic cost than if intrinsically less efficient fast fibres were recruited.


1998 ◽  
Vol 201 (7) ◽  
pp. 913-923 ◽  
Author(s):  
R James ◽  
I A Johnston

Fast-starts associated with escape responses were studied in short-horn sculpin (Myoxocephalus scorpius L.), ranging from 5.5 to 32 cm in total length (L). Electromyography and sonomicrometry were used simultaneously to measure muscle activation and length changes, respectively, in the superficial layers of fast muscle in rostral myotomes. Escape responses consisted of a half tailbeat to bend the body into a C-shape (C-bend), another half tailbeat (contralateral contraction), followed by one or two more tailbeats and/or a gliding phase. The scaling relationships for both muscle strain and shortening duration differed between the C-bend and the contralateral contraction. As a result, relative muscle shortening velocity (V/V0) scaled as -1.18L1.06 for the C-bend and as 1.23L-0. 66 for the contralateral contraction. Therefore, the scaling relationships for muscle shortening velocity varied throughout the time course of the escape response. Muscle power output was determined by using the work-loop technique to subject isolated muscle fibres to in vivo strain and stimulation patterns. Plots of the instantaneous muscle forces and velocities achieved during the contralateral contraction were found to deviate from the steady-state force-velocity relationship. Maximum instantaneous muscle power output was independent of body size, with mean maximum values of 307 and 222 W kg-1 wet muscle mass for the C-bend and the contralateral contraction, respectively. <P>


PLoS ONE ◽  
2017 ◽  
Vol 12 (12) ◽  
pp. e0190335 ◽  
Author(s):  
Axel J. Fenwick ◽  
Alexander M. Wood ◽  
Bertrand C. W. Tanner

1989 ◽  
Vol 142 (1) ◽  
pp. 17-29 ◽  
Author(s):  
C. J. PENNYCUICK ◽  
M. R. FULLER ◽  
LYNNE McALLISTER

Two Harris' hawks were trained to fly along horizontal and climbing flight paths, while carrying loads of various masses, to provide data for estimating available muscle power during short flights. The body mass of both hawks was about 920 g, and they were able to carry loads up to 630 g in horizontal flight. The rate of climb decreased with increasing all-up mass, as also did the climbing power (product of weight and rate of climb). Various assumptions about the aerodynamic power in low-speed climbs led to estimates of the maximum power output of the flight muscles ranging from 41 to 46 W. This, in turn, would imply a stress during shortening of around 210 kPa. The effects of a radio package on a bird that is raising young should be considered in relation to the food load that the forager can normally carry, rather than in relation to its body mass.


2019 ◽  
Vol 124 ◽  
pp. 110631 ◽  
Author(s):  
Mikel L. Sáez de Asteasu ◽  
Nicolás Martínez-Velilla ◽  
Fabricio Zambom-Ferraresi ◽  
Álvaro Casas-Herrero ◽  
Robinson Ramirez-Vélez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document