scholarly journals Sex-specific microhabitat use is associated with sex-biased thermal physiology in Anolis lizards

2020 ◽  
pp. jeb.235697
Author(s):  
Michael L. Logan ◽  
Lauren K. Neel ◽  
Daniel J. Nicholson ◽  
Andrew J. Stokes ◽  
Christina L. Miller ◽  
...  

If fitness optima for a given trait differ between males and females in a population, sexual dimorphism may evolve. Sex-biased trait variation may affect patterns of habitat use, and if the microhabitats used by each sex have dissimilar microclimates, this can drive sex-specific selection on thermal physiology. Nevertheless, tests of differences between the sexes in thermal physiology are uncommon, and studies linking these differences to microhabitat use or behavior are even rarer. We examined microhabitat use and thermal physiology in two ectothermic congeners that are ecologically similar but differ in their degree of sexual size dimorphism. Brown anoles (Anolis sagrei) exhibit male-biased sexual size dimorphism and live in thermally heterogeneous habitats, whereas slender anoles (Anolis apletophallus) are sexually monomorphic in body size and live in thermally homogeneous habitats. We hypothesized that differences in habitat use between the sexes would drive sexual divergence in thermal physiology in brown anoles, but not slender anoles, because male and female brown anoles may be exposed to divergent microclimates. We found that male and female brown anoles, but not slender anoles, used perches with different thermal characteristics and were sexually dimorphic in thermal tolerance traits. However, field-active body temperatures and behavior in a laboratory thermal arena did not differ between females and males in either species. Our results suggest that sexual dimorphism in thermal physiology can arise from phenotypic plasticity or sex-specific selection on traits that are linked to thermal tolerance, rather than from direct effects of thermal environments experienced by males and females.

2008 ◽  
Vol 24 (4) ◽  
pp. 387-396 ◽  
Author(s):  
Bruce D. Patterson ◽  
Carl W. Dick ◽  
Katharina Dittmar

AbstractWe describe levels of parasitism of ectoparasitic bat flies (Hippoboscoidea: Streblidae) on male and female bats from an extensive Neotropical survey. The collection resulted from coordinated vertebrate-parasite surveys undertaken by the Smithsonian Venezuelan Project (SVP) from 1965–1968, which sexed 24 978 bats of 130 species. Streblid parasites were recovered from 6935 individuals of 87 bat species, but only 47 species were captured frequently enough (≥ 20 infested individuals) to permit reliable estimates of streblid parasitism on males and females. Well-sampled species included 39 phyllostomids, four mormoopids, two noctilionids, one natalid and one molossid. Prevalence of streblid parasitism (proportion of individuals infested) of male and female bats was generally not significantly different, and averaged 0.34 across infested species. In species-level analyses assessed against captures, significant sex differences in infestation levels were noted in six species; all had mean prevalence below 0.5 and females were parasitized disproportionately in each. Sex differences in total numbers of flies were noted in 21 species, and in 16 of these, females carried disproportionately heavy loads. Sex differences were also found for eight species of bat in the number of fly species infesting an individual; seven of eight showed heavier female parasitism. In analyses weighted by infestation levels, sex differences in total number of flies were found in only 12 species, with seven showing excessive parasitism of females, and no species showed sex differences in the number of fly species infesting them. These significant biases were not associated with sexual size dimorphism among the bat species. Generally higher levels of parasitism among female bats accords with theory, given their generally higher survivorship and enhanced probabilities of lateral and vertical transmission of host-specific parasites, but contrasts with patterns shown by many other parasitic arthropods. Future analyses should target social groupings of bats, not passively sampled foragers, to better address the mechanisms responsible for this pattern.


Author(s):  
P. M. Parés- Casanova ◽  
A. Kabir

Sexual dimorphism, defined as phenotypic differences between males and females, is a common phenomenon in animals. In this line, Rensch’s rule states that sexual size dimorphism increases with increasing body size when the male is the larger sex and decreases with increasing average body size when the female is the larger sex. Domesticated animals offer excellent opportunities for testing predictions of functional explanations of Rensch’s theory. Pigeon breeds encounters many different functional purposes and selective constraints, which could influence strongly their morphology. The aim of this paper is to examine, for first time, Rensch’s rule among domestic pigeons. It was compiled a database of 12 quantitative traits (body weight, body height, beak thickness, beak length, neck length, neck thickness, wing length, rump width, tail length, tarsus length, tarsus thickness and middle toe length) for males and females of 11 different domestic pigeon breeds: Bangladesh Indigenous, Racing Homer, Turkish Tumbler, Indian Lotan, Kokah, Mookee, Indian Fantail, Bokhara Trumpeter, Bombai, Lahore and Hungarian Giant House; Rock Pigeon (Columba livia) was also considered as wild relative for comparative purposes. Comparative results between males and females showed that only body weight, wing length and neck thickness were consistent with Rensch’s rule. The rest of trait did not present correlations. Among domestic pigeons, there can appear different expressions of dimorphism according to each trait, so it must be considered that Rensch’s rule vary when considering other traits than body weight.


Evolution ◽  
2000 ◽  
Vol 54 (1) ◽  
pp. 259 ◽  
Author(s):  
Marguerite A. Butler ◽  
Thomas W. Schoener ◽  
Jonathan B. Losos

1996 ◽  
Vol 19 (2) ◽  
pp. 254-255
Author(s):  
Michael T. Ghiselin

AbstractIn Darwinian terminology, “sexual selection” refers to purely reproductive competition and is conceptually distinct from natural selection as it affects reproduction generally. As natural selection may favor the evolution of sexual dimorphism by virtue of the division of labor between males and females, this possibility needs to be taken very seriously.


2016 ◽  
Vol 37 (3) ◽  
pp. 291-299 ◽  
Author(s):  
Markus Maerker ◽  
Sandy Reinhard ◽  
Peter Pogoda ◽  
Alexander Kupfer

Sexual size dimorphism (SSD) describing intersexual size differences of a given taxon is a widespread phenomenon in the animal kingdom. SSD plays a significant role in understanding life history and mating system evolution. The snakelike morphology of limbless caecilian amphibians lacking obvious secondary sexual characters (in contrast to frogs and salamanders) impedes an accurate comparison between sexes.Here, the phylogenetically derived teresomatan and viviparous caecilianGeotrypetes seraphini seraphiniwas analysed for patterns of sexual dimorphism. In terms of body size females were the larger sex, but when body length was adjusted male-biased intersexual differences in cloacal shape appeared. The larger female size is likely explained by fecundity selection as clutch size was positively correlated to female body length. Unexpectedly a cryptic, ontogeny related variation of the nuchal collars was found. An overview of SSD in caecilians including data for 27 species of nine out of ten existing families revealed a quite high number of taxa showing sexually dimorphic head size dimensions exclusively present among phylogenetically derived teresomatan caecilians. Still further research including insights into the behavioural ecology and molecular ecology of mating systems is warranted to better understand the evolution of sexual size dimorphism of caecilian amphibians.


1996 ◽  
Vol 74 (7) ◽  
pp. 1238-1245 ◽  
Author(s):  
Gad Perry

Two main explanations, intraspecific niche divergence and sexual selection, have been proposed to explain the origin of sexual size dimorphism. To test these competing hypotheses I studied the ecology, feeding behavior, and diet of the lizard Anolis polylepis in a Costa Rican rain forest. Male A. polylepis were significantly larger and heavier than females but ate smaller food items and had lower stomach volumes, despite possessing longer and wider heads. Males were more sedentary than females or juveniles, chose higher perches, and were more likely to be involved in agonistic interactions. Diets of males, females, and juveniles were also significantly different taxonomically. These data are consistent with the sexual selection origin theory but not with an ecological one. Thus, observed dietary differences probably evolved once dimorphism had been attained through sexual selection.


2006 ◽  
Vol 27 (1) ◽  
pp. 37-46 ◽  
Author(s):  
Lígia Pizzatto ◽  
Otavio Marques

AbstractSexual maturity, sexual dimorphism, reproductive output, and parasitism of the colubrid snake Liophis miliaris were compared among populations inhabiting four regions of Brazil: (1) northern coastal Atlantic forest, (2) southern coastal Atlantic forest, (3) northern inland Atlantic forest (4) southern inland Atlantic forest. Females delayed maturity and attained larger body sizes than males in all regions. Males and females from northern Atlantic forest were smaller and attained maturity with a smaller body size than males of other regions. The sexual size dimorphism index ranged from 0.19 to 0.23 and was lowest in the northern Atlantic forest. There was no sexual dimorphism in head length in any of the populations studied. Clutch size was similar in all populations and increased with maternal body size. The reproductive frequency was lower in the northern coastal Atlantic forest and in contrast to the other regions, tended to increase with female body size. The nematoda Ophidiascaris sp. and cystacanths of Oligacanthorynchus spira (Acanthocephala) occurred equally in both sexes. Fewer snakes from the northern coastal Atlantic forest were infested by parasites compared to the other regions and parasitism apparently did not influence reproduction.


2014 ◽  
Vol 184 (6) ◽  
pp. 727-740 ◽  
Author(s):  
Renato C. Nali ◽  
Kelly R. Zamudio ◽  
Célio F. B. Haddad ◽  
Cynthia P. A. Prado

1985 ◽  
Vol 63 (9) ◽  
pp. 2187-2193 ◽  
Author(s):  
Kevin M. O'Neill

Female digger wasps invest substantially in each of their offspring, laying relatively few, large eggs and providing the young with the insect prey on which they depend for food. In a study of six species in the genera Philanthus, Bembecinus, and Bembix, it was found that within each species, there is a positive correlation between female body size and both the size of their ovarial eggs and the size of the prey they provision. In five of the six species, females were larger than males on average. It is suggested that the apparent association between body size and certain aspects of parental investment by females may provide the directional selection pressure that results in the evolution of sexual size dimorphism in digger wasps. In one species, males and females have the same mean size, probably because, in this species, selection pressure on male size is similar to that on females.


2020 ◽  
Vol 31 (3) ◽  
pp. 792-797
Author(s):  
Marcelo H Cassini

Abstract Sexual size dimorphism is biased toward males in most mammalian species. The most common explanation is precopulatory intramale sexual selection. Large males win fights and mate more frequently. In artiodactyls, previous tests of this hypothesis consisted of interspecific correlations of sexual dimorphism with group size as a surrogate for the intensity of sexual selection (Is). However, group size is not a proper measure of sexual selection for several reasons as is largely recognized in other mammalian taxa. I conducted an interspecific test on the role of sexual selection in the evolution of sexual dimorphism using the variance in genetic paternity as a proxy for the Is. I reviewed the literature and found 17 studies that allowed estimating Is= V/(W2), where V and W are the variance and mean number of offspring per male, respectively. A phylogenetic generalized least squares analysis indicated that dimorphism (Wm/Wf) showed a significant positive regression with the intensity of sexual selection but not group size (multiple r2= 0.40; F3,17= 12.78, P = 0.002). This result suggests that sexual selection may have played a role in the evolution of sexual size dimorphism in Artiodactyla. An alternative hypothesis based on natural selection is discussed.


Sign in / Sign up

Export Citation Format

Share Document