scholarly journals Temperature adaptations of the thermophilic snail Echinolittorina malaccana: insights from metabolomic analysis

2021 ◽  
pp. jeb.238659
Author(s):  
Ya-qi Chen ◽  
Jie Wang ◽  
Ming-ling Liao ◽  
Xiao-xu Li ◽  
Yun-wei Dong

The periwinkle snail Echinolittorina malaccana, whose upper lethal temperature is near 55°C, is one of the most heat-tolerant eukaryotes known. We conducted a multi-level investigation, including cardiac physiology, enzyme activity, and targeted and untargeted metabolomic analysis, that elucidated a spectrum of adaptations to extreme heat. All systems examined showed heat intensity-dependent responses. Under moderate heat stress (from 37 to 45°C) the snail depressed cardiac activity and entered a state of metabolic depression. The global metabolomic analyses and enzymatic analysis showed that the depressed metabolic state under moderate heat stress entailed production of metabolites characteristic of oxygen-independent pathways of ATP generation (lactate and succinate), which suggests that anaerobic metabolism was the main energy supply pathway under heat stress (from 37 to 52°C). The metabolomic analyses also revealed alterations in glycerophospholipid metabolism under extreme heat stress of 52°C, which likely reflected adaptive changes to maintain membrane structure. Small molecular mass organic osmolytes (glycine betaine, choline, and carnitine) showed complex changes in concentration that were consistent with a role of these protein-stabilizing solutes in protection of the proteome under heat stress. This thermophilic species thus can deploy a wide array of adaptive strategies to acclimatize to extremely high temperatures.

Author(s):  
Julian Bolleter ◽  
Bill Grace ◽  
Sarah Foster ◽  
Anthony Duckworth ◽  
Paula Hooper

2018 ◽  
Vol 256-257 ◽  
pp. 196-206 ◽  
Author(s):  
Ting Sun ◽  
Toshihiro Hasegawa ◽  
Liang Tang ◽  
Wei Wang ◽  
Junjie Zhou ◽  
...  

2021 ◽  
Author(s):  
Eden Yifrach ◽  
Duncan Holbrook-Smith ◽  
Jérôme Bürgi ◽  
Alaa Othman ◽  
Miriam Eisenstein ◽  
...  

AbstractSeventy years following the discovery of peroxisomes, their proteome remains undefined. Uncovering the complete peroxisomal proteome, the peroxi-ome, is crucial for understanding peroxisomal activities and cellular metabolism. We used high- content microscopy to uncover the peroxi-ome of the model eukaryote – Saccharomyces cerevisiae. This strategy enabled us to expand the known organellar proteome by ∼40% and paved the way for performing systematic, whole-organellar proteome assays. Coupled with targeted experiments this allowed us to discover new peroxisomal functions. By characterizing the sub-organellar localization and protein targeting dependencies into the organelle, we unveiled non-canonical targeting routes. Metabolomic analysis of the peroxi-ome revealed the role of several newly-identified resident enzymes. Importantly, we found a regulatory role of peroxisomes during gluconeogenesis, which is fundamental for understanding cellular metabolism. With the current recognition that peroxisomes play a crucial part in organismal physiology, our approach lays the foundation for deep characterization of peroxisome function in health and disease.


2020 ◽  
Vol 21 (13) ◽  
pp. 4775
Author(s):  
Hari B. Krishnan ◽  
Won-Seok Kim ◽  
Nathan W. Oehrle ◽  
James R. Smith ◽  
Jason D. Gillman

High growth temperatures negatively affect soybean (Glycine max (L.) Merr) yields and seed quality. Soybean plants, heat stressed during seed development, produce seed that exhibit wrinkling, discoloration, poor seed germination, and have an increased potential for incidence of pathogen infection and an overall decrease in economic value. Soybean breeders have identified a heat stress tolerant exotic landrace genotype, which has been used in traditional hybridization to generate experimental genotypes, with improved seed yield and heat tolerance. Here, we have investigated the seed protein composition and ultrastructure of cotyledonary parenchyma cells of soybean genotypes that are either susceptible or tolerant to high growth temperatures. Biochemical analyses of seed proteins isolated from heat-tolerant and heat-sensitive genotypes produced under 28/22 °C (control), 36/24 °C (moderate), and 42/26 °C (extreme) day/night temperatures revealed that the accumulation in soybean seeds of lipoxygenase, the β-subunit of β-conglycinin, sucrose binding protein and Bowman-Birk protease inhibitor were negatively impacted by extreme heat stress in both genotypes, but these effects were less pronounced in the heat-tolerant genotype. Western blot analysis showed elevated accumulation of heat shock proteins (HSP70 and HSP17.6) in both lines in response to elevated temperatures during seed fill. Transmission electron microscopy showed that heat stress caused dramatic structural changes in the storage parenchyma cells. Extreme heat stress disrupted the structure and the membrane integrity of protein storage vacuoles, organelles that accumulate seed storage proteins. The detachment of the plasma membrane from the cell wall (plasmolysis) was commonly observed in the cells of the sensitive line. In contrast, these structural changes were less pronounced in the tolerant genotype, even under extreme heat stress, cells, for the most part, retained their structural integrity. The results of our study demonstrate the contrasting effects of heat stress on the seed protein composition and ultrastructural alterations that contribute to the tolerant genotype’s ability to tolerate high temperatures during seed development.


Sign in / Sign up

Export Citation Format

Share Document