scholarly journals Avenues of reef-building coral acclimatization in response to rapid environmental change

2021 ◽  
Vol 224 (Suppl 1) ◽  
pp. jeb239319
Author(s):  
Hollie M. Putnam

ABSTRACTThe swiftly changing climate presents a challenge to organismal fitness by creating a mismatch between the current environment and phenotypes adapted to historic conditions. Acclimatory mechanisms may be especially crucial for sessile benthic marine taxa, such as reef-building corals, where climate change factors including ocean acidification and increasing temperature elicit strong negative physiological responses such as bleaching, disease and mortality. Here, within the context of multiple stressors threatening marine organisms, I describe the wealth of metaorganism response mechanisms to rapid ocean change and the ontogenetic shifts in organism interactions with the environment that can generate plasticity. I then highlight the need to consider the interactions of rapid and evolutionary responses in an adaptive (epi)genetic continuum. Building on the definitions of these mechanisms and continuum, I also present how the interplay of the microbiome, epigenetics and parental effects creates additional avenues for rapid acclimatization. To consider under what conditions epigenetic inheritance has a more substantial role, I propose investigation into the offset of timing of gametogenesis leading to different environmental integration times between eggs and sperm and the consequences of this for gamete epigenetic compatibility. Collectively, non-genetic, yet heritable phenotypic plasticity will have significant ecological and evolutionary implications for sessile marine organism persistence under rapid climate change. As such, reef-building corals present ideal and time-sensitive models for further development of our understanding of adaptive feedback loops in a multi-player (epi)genetic continuum.

Author(s):  
Jeffrey D Shields

Abstract Climate change has resulted in increasing temperature and acidification in marine systems. Rising temperature and acidification act as stressors that negatively affect host barriers to infection, thus enhancing disease processes and influencing the emergence of pathogens in ecologically and commercially important species. Given that crustaceans are ectotherms, changes in temperature dominate their physiological and immunological responses to microbial pathogens and parasites. Because of this, the thermal ranges of several crustacean hosts and their pathogens can be used to project the outcomes of infections. Host factors such as molting, maturation, respiration, and immune function are strongly influenced by temperature, which in turn alter the host’s susceptibility to pathogens, further amplifying morbidity and mortality. Microbial pathogens are also strongly influenced by temperature, arguably more so than their crustacean hosts. Microbial pathogens, with higher thermal optima than their hosts, grow rapidly and overcome host immune defenses, which have been weakened by increased temperatures. Pathogen factors such as metabolic rates, growth rates, virulence factors, and developmental rates are often enhanced by rising temperature, which translates into increased transmission, dispersal, and proliferation at the population level, and ultimately emergence of outbreaks in host populations. Less well known are the effects of acidification and salinity intrusion on host-pathogen processes, but they operate alongside temperature, as multiple stressors, that impose significant metabolic and physiological demands on host homeostasis.


2021 ◽  
Vol 288 (1962) ◽  
Author(s):  
Amanda Xuereb ◽  
Quentin Rougemont ◽  
Peter Tiffin ◽  
Huijie Xue ◽  
Megan Phifer-Rixey

As climate change threatens species' persistence, predicting the potential for species to adapt to rapidly changing environments is imperative for the development of effective conservation strategies. Eco-evolutionary individual-based models (IBMs) can be useful tools for achieving this objective. We performed a literature review to identify studies that apply these tools in marine systems. Our survey suggested that this is an emerging area of research fuelled in part by developments in modelling frameworks that allow simulation of increasingly complex ecological, genetic and demographic processes. The studies we identified illustrate the promise of this approach and advance our understanding of the capacity for adaptation to outpace climate change. These studies also identify limitations of current models and opportunities for further development. We discuss three main topics that emerged across studies: (i) effects of genetic architecture and non-genetic responses on adaptive potential; (ii) capacity for gene flow to facilitate rapid adaptation; and (iii) impacts of multiple stressors on persistence. Finally, we demonstrate the approach using simple simulations and provide a framework for users to explore eco-evolutionary IBMs as tools for understanding adaptation in changing seas.


Erdkunde ◽  
2012 ◽  
pp. 221-237 ◽  
Author(s):  
Kirsten Madena ◽  
Helge Bormann ◽  
Luise Giani

Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 286
Author(s):  
Sang-Jin Park ◽  
Seung-Gyu Jeong ◽  
Yong Park ◽  
Sang-hyuk Kim ◽  
Dong-kun Lee ◽  
...  

Climate change poses a disproportionate risk to alpine ecosystems. Effective monitoring of forest phenological responses to climate change is critical for predicting and managing threats to alpine populations. Remote sensing can be used to monitor forest communities in dynamic landscapes for responses to climate change at the species level. Spatiotemporal fusion technology using remote sensing images is an effective way of detecting gradual phenological changes over time and seasonal responses to climate change. The spatial and temporal adaptive reflectance fusion model (STARFM) is a widely used data fusion algorithm for Landsat and MODIS imagery. This study aims to identify forest phenological characteristics and changes at the species–community level by fusing spatiotemporal data from Landsat and MODIS imagery. We fused 18 images from March to November for 2000, 2010, and 2019. (The resulting STARFM-fused images exhibited accuracies of RMSE = 0.0402 and R2 = 0.795. We found that the normalized difference vegetation index (NDVI) value increased with time, which suggests that increasing temperature due to climate change has affected the start of the growth season in the study region. From this study, we found that increasing temperature affects the phenology of these regions, and forest management strategies like monitoring phenology using remote sensing technique should evaluate the effects of climate change.


2004 ◽  
Vol 14 (4) ◽  
pp. 303-313 ◽  
Author(s):  
Karen O’Brien ◽  
Robin Leichenko ◽  
Ulka Kelkar ◽  
Henry Venema ◽  
Guro Aandahl ◽  
...  

2011 ◽  
Vol 8 (3) ◽  
pp. 430-433 ◽  
Author(s):  
Meghan Cooling ◽  
Stephen Hartley ◽  
Dalice A. Sim ◽  
Philip J. Lester

Synergies between invasive species and climate change are widely considered to be a major biodiversity threat. However, invasive species are also hypothesized to be susceptible to population collapse, as we demonstrate for a globally important invasive species in New Zealand. We observed Argentine ant populations to have collapsed in 40 per cent of surveyed sites. Populations had a mean survival time of 14.1 years (95% CI = 12.9–15.3 years). Resident ant communities had recovered or partly recovered after their collapse. Our models suggest that climate change will delay colony collapse, as increasing temperature and decreasing rainfall significantly increased their longevity, but only by a few years. Economic and environmental costs of invasive species may be small if populations collapse on their own accord.


2018 ◽  
Vol 24 (3) ◽  
pp. 267
Author(s):  
Lesley Hughes

‘The Greenhouse Effect and Nature Reserves’ by Robert Peters and Joan Darling, published in the journal Bioscience more than 30 years ago, was a ground-breaking synthesis. Drawing on paleoecology, community ecology and biogeography, the review laid out many concepts about species vulnerability to climate change that have become central tenets of research on climate change adaptation in natural ecosystems. Remarkably, the paper also provided a clear and logical framework for flexible, forward-thinking and interventionist management action, including recommendations about the design of protected areas, and the need for species translocation to reduce extinction risk. Reflecting on the legacy of this paper, it is clear that the uptake of such approaches over the intervening decades has been extremely slow, representing many lost opportunities to reduce species vulnerability to rapid environmental change. This paper is a tribute to the prescience of Peters and Darling, and a call to revisit their farsighted advice to meet conservation challenges that continue to accelerate.


2018 ◽  
Vol 26 (1) ◽  
pp. 13-25 ◽  
Author(s):  
Conor D. Mallory ◽  
Mark S. Boyce

The ability of many species to adapt to the shifting environmental conditions associated with climate change will be a key determinant of their persistence in the coming decades. This is a challenge already faced by species in the Arctic, where rapid environmental change is well underway. Caribou and reindeer (Rangifer tarandus) play a key role in Arctic ecosystems and provide irreplaceable socioeconomic value to many northern peoples. Recent decades have seen declines in many Rangifer populations, and there is strong concern that climate change is threatening the viability of this iconic Arctic species. We examine the literature to provide a thorough and full consideration of the many environmental factors that limit caribou and reindeer populations, and how these might be affected by a warming climate. Our review suggests that the response of Rangifer populations to climate change is, and will continue to be, varied in large part to their broad circumpolar distribution. While caribou and reindeer could have some resilience to climate change, current global trends in abundance undermine all but the most precautionary outlooks. Ultimately, the conservation of Rangifer populations will require careful management that considers the local and regional manifestations of climate change.


Sign in / Sign up

Export Citation Format

Share Document