scholarly journals Dynamic movements facilitate extreme gap crossing in flying snakes

Author(s):  
Michelle Graham ◽  
John J. Socha

In arboreal habitats, direct routes between two locations can be impeded by gaps in the vegetation. Arboreal animals typically use dynamic movements, such as jumping, to navigate these gaps if the distance between supports exceeds their reaching ability. In contrast, most snakes only use the cantilever crawl to cross gaps. This behavior imposes large torques on the animal, inhibiting their gap-crossing capabilities. Flying snakes (Chrysopelea), however, are known to use dynamic behaviors in a different arboreal context: they use a high-acceleration jump to initiate glides. We hypothesize that flying snakes also use jumping take-off behaviors to cross gaps, allowing them to cross larger distances. To test this hypothesis, we used a six-camera motion-capture system to investigate the effect of gap size on crossing behavior in Chrysopelea paradisi, and analyzed the associated kinematics and torque requirements. We found that C. paradisi typically uses cantilevering for small gaps (< 47.5% SVL). Above this distance, C. paradisi were more likely to use dynamic movements than cantilevers, either arching upward or employing a below-branch loop of the body. These dynamic movements extended the range of horizontal crossing to ∼120% SVL. The behaviors used for the largest gaps were kinematically similar to the J-loop jumps used in gliding, and involved smaller torques than the cantilevers. These data suggest that the ability to jump allows flying snakes to access greater resources in the arboreal environment, and supports the broader hypothesis that arboreal animals jump across gaps only when reaching is not mechanically possible.

Author(s):  
Martin L. Tanaka ◽  
Premkumar Subbukutti ◽  
David Hudson ◽  
Kimberly Hudson ◽  
Pablo Valenzuela ◽  
...  

Abstract The neural prosthesis under development is designed to improve gait in people with muscle weakness. The strategy is to augment impaired or damaged neural connections between the brain and the muscles that control walking. This third-generation neural prosthesis contains triaxial inertial measurement units (IMUs - accelerometers, gyroscopes, and processing chip) to measure body segment position and force sensitive resistors placed under the feet to detect ground contact. A study was conducted to compare the accuracy of the neural prosthesis using a traditional camera motion capture system as a reference. The IMUs were found to accurately represent the amplitude of the gait cycle components and generally track the motion. However, there are some differences in phase, with the IMUs lagging the actual motion. Phase lagged by about 10 degrees in the ankle and by about 5 degrees in the knee. Error of the neural prosthesis varied over the gait cycle. The average error for the ankle, knee and hip were 6°, 8°, and 9°, respectively. Testing showed that the neural prosthesis was able to capture the general shape of the joint angle curves when compared to a commercial camera motion capture system. In the future, measures will be taken to reduce lag in the gyroscope and reduce jitter in the accelerometer so that data from both sensors can be combination to obtain more accurate readings.


Author(s):  
Muhammad Zulhilmi Kaharuddin ◽  
Siti Badriah Khairu Razak ◽  
Mohamed Shawal Abd Rahman ◽  
Wee Chang An ◽  
Muhammad Ikram Kushairi ◽  
...  

Author(s):  
Per-Anders Fransson ◽  
Maria H. Nilsson ◽  
Diederick C. Niehorster ◽  
Marcus Nyström ◽  
Stig Rehncrona ◽  
...  

Abstract Background Tremor is a cardinal symptom of Parkinson’s disease (PD) that may cause severe disability. As such, objective methods to determine the exact characteristics of the tremor may improve the evaluation of therapy. This methodology study aims to validate the utility of two objective technical methods of recording Parkinsonian tremor and evaluate their ability to determine the effects of Deep Brain Stimulation (DBS) of the subthalamic nucleus and of vision. Methods We studied 10 patients with idiopathic PD, who were responsive to L-Dopa and had more than 1 year use of bilateral subthalamic nucleus stimulation. The patients did not have to display visible tremor to be included in the study. Tremor was recorded with two objective methods, a force platform and a 3 dimensional (3D) motion capture system that tracked movements in four key proximal sections of the body (knee, hip, shoulder and head). They were assessed after an overnight withdrawal of anti-PD medications with DBS ON and OFF and with eyes open and closed during unperturbed and perturbed stance with randomized calf vibration, using a randomized test order design. Results Tremor was detected with the Unified Parkinson’s Disease Rating Scale (UPDRS) in 6 of 10 patients but only distally (hands and feet) with DBS OFF. With the force platform and the 3D motion capture system, tremor was detected in 6 of 10 and 7 of 10 patients respectively, mostly in DBS OFF but also with DBS ON in some patients. The 3D motion capture system revealed that more than one body section was usually affected by tremor and that the tremor amplitude was non-uniform, but the frequency almost identical, across sites. DBS reduced tremor amplitude non-uniformly across the body. Visual input mostly reduced tremor amplitude with DBS ON. Conclusions Technical recording methods offer objective and sensitive detection of tremor that provide detailed characteristics such as peak amplitude, frequency and distribution pattern, and thus, provide information that can guide the optimization of treatments. Both methods detected the effects of DBS and visual input but the 3D motion system was more versatile in that it could detail the presence and properties of tremor at individual body sections.


2020 ◽  
Vol 14 ◽  
Author(s):  
Grady W. Jensen ◽  
Patrick van der Smagt ◽  
Egon Heiss ◽  
Hans Straka ◽  
Tobias Kohl

2015 ◽  
Vol 47 (1) ◽  
pp. 41-49 ◽  
Author(s):  
Isaac Estevan ◽  
Coral Falco ◽  
Julia Freedman Silvernail ◽  
Daniel Jandacka

AbstractIn taekwondo, there is a lack of consensus about how the kick sequence occurs. The aim of this study was to analyse the peak velocity (resultant and value in each plane) of lower limb segments (thigh, shank and foot), and the time to reach this peak velocity in the kicking lower limb during the execution of the roundhouse kick technique. Ten experienced taekwondo athletes (five males and five females; mean age of 25.3 ±5.1 years; mean experience of 12.9 ±5.3 years) participated voluntarily in this study performing consecutive kicking trials to a target located at their sternum height. Measurements for the kinematic analysis were performed using two 3D force plates and an eight camera motion capture system. The results showed that the proximal segment reached a lower peak velocity (resultant and in each plane) than distal segments (except the peak velocity in the frontal plane where the thigh and shank presented similar values), with the distal segment taking the longest to reach this peak velocity (p < 0.01). Also, at the instant every segment reached the peak velocity, the velocity of the distal segment was higher than the proximal one (p < 0.01). It provides evidence about the sequential movement of the kicking lower limb segments. In conclusion, during the roundhouse kick in taekwondo inter-segment motion seems to be based on a proximo-distal pattern.


Author(s):  
Mohd Zamani Ngali ◽  
◽  
Noratika Budi Jemain ◽  
Chang An Wee ◽  
Mohd Nasrull Abdol Rahman ◽  
...  

2016 ◽  
Vol 17 (3) ◽  
Author(s):  
Jonathan Sinclair

AbstractThe current investigation aimed to examine the effects of running barefoot and in conventional and barefoot inspired footwear on the loads borne by the tibiofemoral joint.Fifteen male participants ran at 4.0 m/s over a force platform whilst running barefoot, in barefoot inspired footwear and also in conventional footwear. Lower body kinematics were collected using an eight-camera motion capture system. Peak tibiofemoral force, peak tibiofemoral stress, and tibiofemoral load rate were extracted and compared between footwear via one-way repeated measures ANOVA.The results showed that the tibiofemoral instantaneous load rate was significantly lower in conventional footwear (106.63 BW/s) in comparison with barefoot running (173.87 BW/s), Vibram Five Fingers (160.17 BW/s), Merrell (155.32 BW/s), Inov-8 (167.79 BW/s), and Nike Free (144.72 BW/s).This indicates that running barefoot and in barefoot inspired footwear may place runners at increased risk from running-related tibiofemoral pathologies.


2017 ◽  
Vol 135 ◽  
pp. 00059
Author(s):  
Wee Chang An ◽  
Mohd Zamani Ngali ◽  
Zulhilmi Kaharuddin ◽  
Siti Badriah Khairu Razak

Sign in / Sign up

Export Citation Format

Share Document