The Use of a New Tilting Tunnel Respirometer to Investigate Some Aspects of Metabolism and Swimming Activity of the Plaice (Pleuronectes Platessa L.)

1980 ◽  
Vol 85 (1) ◽  
pp. 295-309
Author(s):  
I. G. PRIEDE ◽  
F.G. T. HOLLIDAY

1. Plaice and other flatfish can be induced to swim down a slope of about 60° against an upwelling water flow in a water tunnel. 2. A tilting Brett-type tunnel respirometer based on the above principle enabled laboratory experiments on swimming plaice to be carried out. 3. From trials at 5°, 10°, 15 °C, the relationship between specific swimming speed, V (body lengths s−1), oxygen consumption, R (mg−1. kg−1 h−1) and temperature, T is: log10 = 0.3318V + log10 (2.45T+26.52). 4. If the fish is resting (i.e. V = 0), the oxygen consumption is lower than predicted by the above equation. At rest: R = 3.14T+2.66. 5. The cost of swimming in plaice is very similar to that of typical round fish such as haddock but the resting metabolic rate is lower than for haddock. 6. Before swimming, a negatively buoyant fish such as plaice must lift off the bottom. This cost of lift-off or posture effect makes it uneconomical for plaice to swim at speeds below 0.6V.

1998 ◽  
Vol 201 (19) ◽  
pp. 2779-2789 ◽  
Author(s):  
DM Webber ◽  
RG Boutilier ◽  
SR Kerr

Adult Atlantic cod (2 kg Gadus morhua) were fitted with Doppler ultrasonic flow-probes to measure ventral aortic outflow (i.e. cardiac output). The probes remained patent for upwards of 3 months, during which time detailed relationships between cardiac output (), heart rate (fh) and rate of oxygen consumption (O2) were determined as a function of swimming speed and temperature (5 degreesC and 10 degreesC). The rate of oxygen consumption increased linearly with and exponentially with swimming speed. A very good correlation was observed between O2 and (r2=0.86) compared with the correlation between O2 and fh (r2=0.50 for all 10 degreesC data and r2=0.86 for all 5 degreesC data). However, the O2 versus fh correlation gradually improved over approximately 1 week after surgery (r2=0.86). The relationship between O2 and was independent of temperature, while the relationship between O2 and fh changed with temperature. Hence, calculating O2 from is simpler and does not require that temperature be recorded simultaneously. Variations in cardiac output were determined more by changes in stroke volume (Vs) than by fh; therefore, fh was a less reliable predictor of metabolic rate than was . Given that can be used to estimate O2 so faithfully, the advent of a cardiac output telemeter would enable robust estimates to be made of the activity metabolism of free-ranging fish in nature, thereby strengthening one of the weakest links in the bioenergetic models of fisheries biology.


1987 ◽  
Vol 128 (1) ◽  
pp. 63-85 ◽  
Author(s):  
RICARDO FEBRY ◽  
PETER LUTZ

We have investigated how the maintenance, net cost of swimming and total (maintenance + net cost of swimming) metabolic rates of red, hybrid tilapia (Oreochromis mossambicus ♀ × O. hornorum ♂) responded to different acclimation salinities, and if these responses correlated with changes in ion-osmoregulation (= osmoregulation) costs. Three groups of fish were acclimated to either fresh water (FW, 0‰), isosmotic sea water (ISW, 12‰) or full strength sea water (SW, 35 ‰) and oxygen consumption was measured while they swam at 10, 20, 30 and 40cms-1. Maintenance oxygen consumption (estimated by extrapolation), for an average fish (63g), increased among groups in the following order: FW < ISW < SW. The net cost of swimming increased in the order ISW < SW < FW, and total oxygen consumption (maintenance + net cost of swimming) increased in the order ISW < FW < SW. We assumed that the contribution of cardiac, branchial and swimming muscles to the net cost of swimming was proportional to swimming speed only, and therefore, at similar speeds, differences in the net cost of swimming among salinities were due to changes in the activity-related cost of osmoregulation. Consequently, the order in which the net cost of swimming increases from one group to another is the same as the order in which the cost of osmoregulation increases. Since the sequences for maintenance and total metabolic rates differed from that for the net cost of swimming, salinity-related increases in these rates cannot be attributed exclusively to changes in osmoregulation cost. We conclude, based on the differences in the net cost of swimming, that osmoregulation in FW is more expensive than in SW, and that it is cheapest in ISW. Although we were not able to estimate the total cost of osmoregulation in FW and SW, we estimated the activity-related cost, relative to the cost in ISW, at different swimming speeds (net cost of swimming in FW or SW minus net cost of swimming in ISW at each speed). For a 63-g fish in FW, this cost increased from zero at rest, to 41mgO2kg−1h−1 (16% of the total metabolic rate, 24% of the net cost swimming) at 40 cms−1. In SW the same cost increased only to 32 mgO2 kg−1h−1 (12% of the total metabolic rate, 20% of the net cost of swimming) at 40cms−1. The net cost of swimming in FW or SW increased with swimming speed at a rate 3×4 times faster


2001 ◽  
Vol 204 (12) ◽  
pp. 2127-2132 ◽  
Author(s):  
Albert F. Bennett ◽  
James W. Hicks

SUMMARY Monitor lizards (Varanus exanthematicus) were used to examine the prioritization or additivity of the metabolic responses associated with exercise and digestion, either of which can elevate metabolic rate independently. Rates of oxygen consumption (V̇.O2) and ventilation (V̇.E) were measured in lizards during fasting exercise, postprandial rest and postprandial exercise. In fasting animals, V̇.O2 increased with walking speed to a maximal value of 15.9mlO2kg−1min−1 at 1.25kmh−1. Postprandial resting metabolic rate was elevated significantly above fasting levels (4.1 versus 2.0mlO2kg−1min−1). During postprandial exercise, V̇.O2 increased to a maximal value of 18.8mlO2kg−1min−1 at 1.25kmh−1. At every level of exercise, V̇.O2 was significantly higher in postprandial animals by a similar increment; the maximal rate of oxygen consumption was significantly increased by 18% in postprandial individuals. Maximal V̇.E did not differ in fasting and postprandial animals and, therefore, the greater V̇.O2max of postprandial animals cannot be attributed to a higher ventilation rate. Air convection requirement (V̇.E/V̇.O2) is significantly lower in postprandial animals at rest and at all levels of exercise, indicating a relative hypoventilation and increased pulmonary oxygen extraction efficiency. We suggest that this increased oxygen extraction may be due to decreased cardiopulmonary shunts and/or to lower mixed venous oxygen content. The data unequivocally support an additivity model rather than prioritization models for the allocation of elevated metabolic rate: the postprandial metabolic increment is not suspended during exercise, but rather is added onto the cost of exercise. It is clear that fasting exercise did not elicit truly maximal levels of cardiopulmonary oxygen transport in these animals, indicating problems for design models that make this assumption.


2000 ◽  
Vol 203 (24) ◽  
pp. 3727-3731 ◽  
Author(s):  
A. Ancel ◽  
L.N. Starke ◽  
P.J. Ponganis ◽  
R. Van Dam ◽  
G.L. Kooyman

The energy requirements of Brandt's cormorants (Phalacrocorax penicillatus) during surface swimming were measured in birds swimming under a metabolic chamber in a water flume. From the oxygen consumption recordings, we extrapolated the metabolic rate and cost of transport at water speeds ranging from 0 to 1.3 m s(−)(1). In still water, the birds' mean mass-specific rate of oxygen consumption (V(O2)) while floating at the surface was 20.2 ml O(2)min(−)(1)kg(−)(1), 2.1 times the predicted resting metabolic rate. During steady-state voluntary swimming against a flow, their V(O2) increased with water speed, reaching 74 ml O(2)min(−)(1)kg(−)(1) at 1.3 m s(−)(1), which corresponded to an increase in metabolic rate from 11 to 25 W kg(−)(1). The cost of transport decreased with swimming velocity, approaching a minimum of 19 J kg(−)(1)m(−)(1) for a swimming speed of 1.3 m s(−)(1). Surface swimming in the cormorant costs approximately 18 % less than sub-surface swimming. This confirms similar findings in tufted ducks (Aythya fuligula) and supports the hypothesis that increased energy requirements are necessary in these birds during diving to overcome buoyancy and heat loss during submergence.


1992 ◽  
Vol 135 (1) ◽  
pp. 45-51 ◽  
Author(s):  
S. Iossa ◽  
G. Liverini ◽  
A. Barletta

ABSTRACT We have examined the relationship between the changes in resting metabolic rate (RMR) and those in hepatic metabolism induced by hyperthyroidism and fasting for 24 h. We found that hyperthyroidism induced a significant increase in RMR, while fasting for 24 h reduced RMR in euthyroid but not in hyperthyroid rats. We have also measured oxygen consumption in isolated hepatocytes from euthyroid and hyperthyroid rats, fed or fasted for 24 h. Hyperthyroidism induced an increase in oxygen consumption in rat liver cells; fasting for 24 h increased respiratory rates in isolated liver cells from euthyroid but not from hyperthyroid rats. The findings showed that hyperthyroidism and fasting for 24 h have opposite effects on RMR but similar effects on hepatic metabolism. The results also indicated that the increase in RMR found in hyperthyroid rats is partly due to an increase in hepatic metabolism, while no correlation exists between variations in resting and hepatic metabolism induced by 24-h fasting. Journal of Endocrinology (1992) 135, 45–51


Author(s):  
Heidi K. Byrne ◽  
Jack H. Wilmore

The present cross-sectional study was designed to investigate the relationship between exercise training and resting metabolic rate (RMR). The focus of this investigation was to compare RMR in aerobically trained (AT), resistance trained (RT), and untrained (UNT) women. Subjects were also classified as highly trained (HT), moderately trained (MT), or untrained (UNT) in order to examine the relationship between RMR and level of training. Sixty-one women between the ages of 18 and 46 years volunteered to serve as subjects in this study. Each subject completed measurements of body composition, maximal oxygen uptake (V̇O2max), and two consecutive measurements of RMR. The data presented show that there was no significant difference in resting metabolic rate between resistance-trained, aerobically trained, and control subjects. However, when grouped by intensity of training, there was a trend for an increased resting metabolic rate (kcal/day) in the highly trained subjects, regardless of mode of training.


1993 ◽  
Vol 21 (7) ◽  
pp. 1012-1019 ◽  
Author(s):  
GEORG KREYMANN ◽  
SEBASTIAN GROSSER ◽  
PETER BUGGISCH ◽  
CLAUS GOTTSCHALL ◽  
STEPHAN MATTHAEI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document