Mechanisms-based constitutive equations for the superplastic behaviour of a titanium alloy

1996 ◽  
Vol 31 (3) ◽  
pp. 187-196 ◽  
Author(s):  
M Zhou ◽  
F P E Dunne

Mechanisms-based constitutive equations are proposed for the high-temperature behaviour of a class of titanium alloys, for which the deformation mechanisms include diffusional creep, grain boundary sliding, dislocation creep and grain growth. A computational procedure has been developed for the determination of the constitutive equations from a material database. The constitutive equations and the procedure for their determination have been validated by modelling the behaviour of the titanium alloy Ti-6Al-4V at 927°C. It is shown that the procedure developed for the determination of the mechanisms-based constitutive equations can be used to identify the important deformation mechanisms in operation for particular stress, temperature and strain rate conditions. For the case of the Ti-6Al-4V material, the procedure developed correctly predicts the material hardening due to grain growth and indicates that an additional hardening mechanism operates. In addition, the procedure is able to identify grain boundary sliding as a predominant deformation mechanism. The constitutive equations, which are generic in nature, and the procedure for their determination are applicable over a range of materials and are suitable for modelling the macroscopic and the important microscopic aspects of material behaviour during processing. The equations may be readily determined using the procedure presented, which is highly suitable for development as an expert system, to completely automate the process.

2018 ◽  
Author(s):  
Sina Marti ◽  
Holger Stünitz ◽  
Renée Heilbronner ◽  
Oliver Plümper ◽  
Rüdiger Kilian

Abstract. While it is widely observed that mafic rocks are able to exeprience high strains by viscous flow, details on their rheology and deformation mechanisms are poorly constrained. Here, rock deformation experiments on four different, water-added plagioclase-pyroxene mixtures are presented: (i) plagioclase(An60-70) – clinopyroxene – orthopyroxene, (ii) plagioclase(An60) – diopside, (iii) plagioclase(An60) – enstatite and (iv) plagioclase(An01) – enstatite. Samples were deformed in general shear at strain rates of 3 × 10−5 to 3 × 10−6 s−1, 800 °C and confining pressure of 1.0 or 1.5 GPa. Results indicate that dissolution-precipitation creep (DPC) and grain boundary sliding (GBS) are the dominant deformation mechanisms. Coinciding with sample deformation, syn-kinematic mineral reactions yield abundant nucleation of new grains; the resulting intense grain size reduction is considered crucial for the activity of DPC and GBS. In high strain zones dominated by plagioclase, a weak, non-random and geometrically consistent crystallographic preferred orientation (CPO) is observed. Usually, a CPO is considered a consequence of dislocation creep, but the experiments presented here demonstrate that a CPO can develop during DPC and GBS. This study provides new evidence for the importance of DPC and GBS in mid-crustal shear zones within mafic rocks, which has important implications on understanding and modelling of mid-crustal rheology and flow.


2021 ◽  
Vol 15 (9) ◽  
pp. 4589-4605
Author(s):  
Mark D. Behn ◽  
David L. Goldsby ◽  
Greg Hirth

Abstract. Viscous flow in ice is often described by the Glen flow law – a non-Newtonian, power-law relationship between stress and strain rate with a stress exponent n ∼ 3. The Glen law is attributed to grain-size-insensitive dislocation creep; however, laboratory and field studies demonstrate that deformation in ice can be strongly dependent on grain size. This has led to the hypothesis that at sufficiently low stresses, ice flow is controlled by grain boundary sliding, which explicitly incorporates the grain size dependence of ice rheology. Experimental studies find that neither dislocation creep (n ∼ 4) nor grain boundary sliding (n ∼ 1.8) have stress exponents that match the value of n ∼ 3 in the Glen law. Thus, although the Glen law provides an approximate description of ice flow in glaciers and ice sheets, its functional form is not explained by a single deformation mechanism. Here we seek to understand the origin of the n ∼ 3 dependence of the Glen law by using the “wattmeter” to model grain size evolution in ice. The wattmeter posits that grain size is controlled by a balance between the mechanical work required for grain growth and dynamic grain size reduction. Using the wattmeter, we calculate grain size evolution in two end-member cases: (1) a 1-D shear zone and (2) as a function of depth within an ice sheet. Calculated grain sizes match both laboratory data and ice core observations for the interior of ice sheets. Finally, we show that variations in grain size with deformation conditions result in an effective stress exponent intermediate between grain boundary sliding and dislocation creep, which is consistent with a value of n = 3 ± 0.5 over the range of strain rates found in most natural systems.


1985 ◽  
Vol 6 ◽  
pp. 79-82 ◽  
Author(s):  
P. Duval

Crystal size in polar ice caps increases with depth from the snow surface down to several hundred meters. Data on crystal growth in isothermal polar snow and ice show the same linear relationship between the size of crystals and their age. This paper reviews the mechanical behavior of polar ice which exhibits grain growth. Grain boundary migration associated with grain growth appears to be an efficient accomodation process for grain boundary sliding and dislocation glide. For grain growth to occur, strain energy must always be lower than the free energy of boundaries. The sintering of ice particles in polar firn is energized by the pressure due to the overburden of snow. Dislocation creep must be taken into account to explain the densification rate in the intermediate and final stage Constants of power law creep should depend on the crystal growth rate.


Metal Science ◽  
1975 ◽  
Vol 9 (1) ◽  
pp. 141-144 ◽  
Author(s):  
R. C. Gifkins ◽  
T. G. Langdon ◽  
D. McLean

2010 ◽  
Vol 667-669 ◽  
pp. 915-920
Author(s):  
Konstantin Ivanov ◽  
Evgeny V. Naydenkin

Deformation mechanisms occurring by tension of ultrafine-grained aluminum processed by equal-channel angular pressing at room temperature are investigated using comparative study of the microstructure before and after tensile testing as well as deformation relief on the pre-polished surface of the sample tested. Deformation behavior and structure evolution during tension suggest development of grain boundary sliding in addition to intragrain dislocation slip. Contribution grain boundary sliding to the overall deformation calculated using the magnitude of shift of grains relative to each other is found to be ~40%.


2004 ◽  
Vol 467-470 ◽  
pp. 545-550 ◽  
Author(s):  
David J. Prior ◽  
Michel Bestmann ◽  
Angela Halfpenny ◽  
Elisabetta Mariani ◽  
Sandra Piazolo ◽  
...  

Misorientation analysis, using EBSD data sets, has enabled us to constrain better recrystallization mechanisms in rocks and minerals. Observed microstructures are not explicable in terms of recovery, boundary bulging and migration alone. We have to invoke either a nucleation process (physics unknown) or grain rotations that are not related to grain or boundary crystallography. Such rotations can occur by diffusion accommodated grain boundary sliding and this mechanism explains best the microstructure and texture of recrystallized grains in some rocks.


2012 ◽  
Vol 735 ◽  
pp. 17-21
Author(s):  
Eiichi Sato ◽  
Kaoru Ishiwata ◽  
Tetsuya Matsunaga

HCP metals show new dislocation creep at temperatures below 0.3 Tm with stresses below σ0.2, while FCC metals show it above σ0.2. In the former, grain boundaries absorb the dislocations through slip-induced grain-boundary sliding, while in the latter dislocations are accommodated by cross slip at cell walls. The difference comes from the difference in the crystal symmetry. In UFG-Al at low temperatures, it is anticipated that grains without cell structure lead creep deformation similar to CG HCP metals rather than CG Al. UFG Al specimens were fabricated by ARB method. They showed remarkable creep behavior at less than σ0.2 similary to CG HCP metals. It posseses stress exponent of about three, grain-size exponent of almost zero, and very low apparent activation energy of 20 kJ/mol, and also grain boundary sliding behavior is obserbed by AFM.


2010 ◽  
Vol 654-656 ◽  
pp. 607-610 ◽  
Author(s):  
Koji Hagihara ◽  
Akihito Kinoshita ◽  
Yuya Sugino ◽  
Michiaki Yamasaki ◽  
Yoshihito Kawamura ◽  
...  

Deformation mechanisms of Mg89Zn4Y7 (at.%) extruded alloy, which is mostly composed of LPSO-phase, was investigated focusing on their temperature dependence. The yield stress of as-extruded alloy showed extremely high value of ~480 MPa at RT, but it largely decreased to ~130 MPa at 300 °C. The decreasing rate of the yield stress could be significantly reduced, however, by the annealing of specimen at 400 °C, by suppressing the microyielding which is considered to occur related by the grain boundary sliding in restricted regions. The yield stress of the annealed specimens with random textures could be estimated by the Hall-Petch relationship by regarding the length of long-axis of plate-like grains as a grain size between RT and 300 °C. The yield stress of the annealed specimens maintained high values even at 200°C, but it also showed large decreases at 300 °C.


Sign in / Sign up

Export Citation Format

Share Document