Analysis of an aerodynamic grooved journal bearing with plain sleeve

Author(s):  
C-C Wang

This article studies the non-linear behaviour of a herringbone-grooved rigid rotor supported by a gas film bearing. A numerical method is employed to a time-dependent mathematical model for herringbone-grooved gas journal bearings. The finite difference method with successive over-relation method is employed to solve the Reynolds equation. The system state trajectory, Poincaré maps, power spectra, and bifurcation diagrams are used to analyse the dynamic behaviour of the rotor centre in the horizontal and vertical directions under different operating conditions. The analysis reveals a complex dynamic behaviour comprising periodic and quasi-periodic responses of the rotor centre. This article shows how the dynamic behaviour of this type of system varies with changes in rotor mass and bearing number. The results of this study contribute to a further understanding of the non-linear dynamics of aerodynamic-grooved journal bearing systems.

Author(s):  
C-C Wang ◽  
C-K Chen

This paper studies the bifurcation of a rigid rotor supported by an externally pressurized porous gas journal bearing. A time-dependent mathematical model for porous gas journal bearings is presented. The modified Reynolds equation is solved using the finite difference method and the SOR (successive over relation) method. The system state trajectory, Poincaré maps, power spectra and bifurcation diagrams are used to analyse the dynamic behaviour of the rotor centre in the horizontal and vertical directions under different operating conditions. The analysis reveals a complex dynamic behaviour comprising periodic and quasi-periodic responses of the rotor centre. This paper shows how the dynamic behaviour of systems of this type varies with changes in rotor mass, squeeze number and bearing number. The results of this study contribute to a further understanding of the non-linear dynamics of gas-lubricated, externally pressurized, porous rotor-bearing systems.


Author(s):  
C-C Wang ◽  
M-J Jang ◽  
C-K Chen

This paper studies the bifurcation of a flexible rotor supported by gas film bearings. A time dependent mathematical model for gas journal bearings is presented. The finite difference method, with the successive overrelation method (SOR), is employed to solve the Reynolds equation. The system state trajectory, Poincare maps, power spectra and bifurcation diagrams are used to analyse the dynamic behaviour of the rotor and journal centre in the horizontal and vertical directions under different operating conditions. The analysis reveals a complex dynamic behaviour comprising periodic and subharmonic response of the rotor and journal centre. This paper shows how the dynamic behaviour of this type of system varies with changes in rotor mass and rotational velocity. The results of this study contribute to a further understanding of the non-linear dynamics of gas film rotor-bearing systems.


2001 ◽  
Vol 123 (4) ◽  
pp. 755-767 ◽  
Author(s):  
Cheng-Chi Wang ◽  
Cha’o-Ku`ang Chen

This paper studies the bifurcation of a rigid rotor supported by a gas film bearing. A time-dependent mathematical model for gas journal bearings is presented. The finite differences method and the Successive Over Relation (S.O.R) method are employed to solve the Reynolds’ equation. The system state trajectory, Poincare´ maps, power spectra, and bifurcation diagrams are used to analyze the dynamic behavior of the rotor center in the horizontal and vertical directions under different operating conditions. The analysis shows how the existence of a complex dynamic behavior comprising periodic and subharmonic response of the rotor center. This paper shows how the dynamic behavior of this type of system varies with changes in rotor mass and rotational velocity. The results of this study contribute to a further understanding of the nonlinear dynamics of gas film rotor-bearing systems.


2002 ◽  
Vol 124 (3) ◽  
pp. 553-561 ◽  
Author(s):  
Cheng-Chi Wang ◽  
Cheng-Ying Lo ◽  
Cha’o-Kuang Chen

This paper studies the nonlinear dynamic analysis of a flexible rotor supported by externally pressurized porous gas journal bearings. A time-dependent mathematical model for externally pressurized porous gas journal bearings is presented. The finite difference method and the Successive Over Relation (S.O.R.) method are employed to solve the modified Reynolds’ equation. The system state trajectory, Poincare´ maps, power spectra, and bifurcation diagrams are used to analyze the dynamic behavior of the rotor and journal center in the horizontal and vertical directions under different operating conditions. The analysis reveals a complex dynamic behavior comprising periodic and quasi-periodic response of the rotor and journal center. This paper shows how the dynamic behavior of this type of system varies with changes in rotor mass and bearing number. The results of this study contribute to a further understanding of the nonlinear dynamics of gas-lubricated, externally pressurized, porous rotor-bearing systems.


Lubricants ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 30 ◽  
Author(s):  
Hannes Allmaier ◽  
David E. Sander

The rotational dynamics and lubrication of the piston pin of a Gasoline engine are investigated in this work. The clearance plays an essential role for the lubrication and dynamics of the piston pin. To obtain a realistic clearance, as a first step, a thermoelastic simulation is conducted for the aluminum piston for the full-load firing operation by considering the heat flow from combustion into the piston top and suitable thermal boundary conditions for the piston rings, piston skirt, and piston void. The result from this thermoelastic simulation is a noncircular and strongly enlarged clearance. In the second step, the calculated temperature field of the piston and the piston-pin clearance are used in the simulation of the piston-pin journal bearings. For this journal bearing simulation, a highly advanced and extensively validated method is used that also realistically describes mixed lubrication. By using this approach, the piston-pin rotation and lubrication are investigated for several different operating conditions from part load to full load for different engine speeds. It is found that the piston pin rotates mostly at very slow rotational speeds and even changes its rotational direction between different operating conditions. Several influencing effects on this dynamic behaviour (e.g., clearance and pin surface roughness) are investigated to see how the lubrication of this crucial part can be improved.


2006 ◽  
Vol 129 (2) ◽  
pp. 221-230 ◽  
Author(s):  
Alex de Kraker ◽  
Ron A. J. van Ostayen ◽  
A. van Beek ◽  
Daniel J. Rixen

In this paper a multiscale method is presented that includes surface texture in a mixed lubrication journal bearing model. Recent publications have shown that the pressure generating effect of surface texture in bearings that operate in full film conditions may be the result of micro-cavitation and/or convective inertia. To include inertia effects, the Navier–Stokes equations have to be used instead of the Reynolds equation. It has been shown in earlier work (de Kraker et al., 2006, Tribol. Trans., in press) that the coupled two-dimensional (2D) Reynolds and 3D structure deformation problem with partial contact resulting from the soft EHL journal bearing model is not easy to solve due to the strong nonlinear coupling, especially for soft surfaces. Therefore, replacing the 2D Reynolds equation by the 3D Navier–Stokes equations in this coupled problem will need an enormous amount of computing power that is not readily available nowadays. In this paper, the development of a micro–macro multiscale method is described. The local (micro) flow effects for a single surface pocket are analyzed using the Navier–Stokes equations and compared to the Reynolds solution for a similar smooth piece of surface. It is shown how flow factors can be derived and added to the macroscopic smooth flow problem, that is modeled by the 2D Reynolds equation. The flow factors are a function of the operating conditions such as the ratio between the film height and the pocket dimensions, the surface velocity, and the pressure gradient over a surface texture unit cell. To account for an additional pressure buildup in the texture cell due to inertia effects, a pressure gain is introduced at macroscopic level. The method also allows for microcavitation. Microcavitation occurs when the pressure variation due to surface texture is larger than the average pressure level at that particular bearing location. In contrast with the work of Patir and Cheng (1978, J. Lubrication Technol., 78, pp. 1–10), where the microlevel is solved by the Reynolds equation, and the Navier–Stokes equations are used at the microlevel. Depending on the texture geometry and film height, the Reynolds equation may become invalid. A second pocket effect occurs when the pocket is located in the moving surface. In mixed lubrication, fluid can become trapped inside a pocket and squeezed out when the pocket is running into an area with higher contact load. To include this effect, an additional source term that represents the average fluid inflow due to the deformation of the surface around the pocket is added to the Reynolds equation at macrolevel. The additional inflow is computed at microlevel by numerical solution of the surface deformation for a single pocket that is subject to a contact load. The pocket volume is a function of the contact pressure. It must be emphasized that before ready-to-use results can be presented, a large number of simulations to determine the flow factors and pressure gain as a function of the texture parameters and operating conditions have yet to be done. Before conclusions can be drawn, regarding the dominanant mechanism(s), the flow factors and pressure gain have to be added to the macrobearing model. In this paper, only a limited number of preliminary illustrative simulation results, calculating the flow factors for a single 2D texture geometry, are shown to give insight into the method.


Author(s):  
H-T Yau ◽  
C-K Chen ◽  
C-L Chen

The bifurcation and chaos of the unbalanced response of a bearing-rotor system with non-linear suspension are investigated on the basis of the assumption of an incompressible lubricant together with short bearing approximation. Numerical results show that, owing to the non-linear factors, the trajectory of the journal centre demonstrates steady state symmetric motion even when the trajectory of the bearing centre is in a state of disorder. Poincaré maps, bifurcation diagrams and power spectra are used to analyse the behaviour of the bearing centre in the horizontal and vertical directions under different operating conditions. A unidirectional bifurcation phenomenon is detected in the bearing-rotor system in this study. The fractal dimension concept is used to determine whether the system is in a state of chaotic motion. Numerical results show that the dimension of the bearing centre trajectory is fractal and greater than 2 in some operating conditions. This indicates that the bearing centre is in the state of chaotic motion at these operating conditions.


Author(s):  
Shitendu Some ◽  
Sisir K Guha

In this paper a non-linear stability analysis of the two-layered porous journal bearing under coupled-stress lubricant has been presented with velocity slip phenomenon and additive’s percolation effect. In this non-linear transient analysis, system stability is determined by tracing the locus of the journal center and various trajectories of journal center locus have been represented in graphical form for different operating conditions. Furthermore, stability characteristics in respect of critical mass parameter and whirl ratio have been studied under various parametric conditions and a comparison between the linear and non-linear stability analysis have been demonstrated. To acquire the non-dimensional pressure values, non-dimensional transient Reynolds equation has been solved and with these pressure values, bearing load carrying capacity are derived. Fourth order Runge-Kutta method is used to solve the second order equations of motion for journal bearing system to obtain the stability characteristics. Results of this analysis may be helpful for designing such bearings.


1978 ◽  
Vol 20 (5) ◽  
pp. 291-296 ◽  
Author(s):  
N. S. Rao ◽  
B. C. Majumdar

A periodic (displacement) disturbance is imposed on an aerostatic, porous, journal bearing of finite length under steady-state conditions. The dynamic pressure distribution is obtained by a pressure perturbation analysis of Reynolds equation and a modified flow continuity equation in a porous medium. Dynamic stiffness and damping coefficients for different operating conditions are calculated numerically, using a digital computer, and presented in the form of design charts.


Sign in / Sign up

Export Citation Format

Share Document