Numerical study of the working mechanisms and influential factors affecting a compression ignition engine with a closed porous medium chamber

Author(s):  
Z-G Zhao ◽  
M-Z Xie
2019 ◽  
Vol 22 (1) ◽  
pp. 165-183 ◽  
Author(s):  
Oudumbar Rajput ◽  
Youngchul Ra ◽  
Kyoung-Pyo Ha ◽  
You-Sang Son

Engine performance and emissions of a six-stroke gasoline compression ignition engine with a wide range of continuously variable valve duration control were numerically investigated at low engine load conditions. For the simulations, an in-house three-dimensional computational fluid dynamics code with high-fidelity physical sub-models was used, and the combustion and emission kinetics were computed using a reduced kinetics mechanism for a 14-component gasoline surrogate fuel. Variation of valve timing and duration was considered under both positive valve overlap and negative valve overlap including the rebreathing of intake valves via continuously variable valve duration control. Close attention was paid to understand the effects of two additional strokes of the engine cycle on the thermal and chemical conditions of charge mixtures that alter ignition, combustion and energy recovery processes. Double injections were found to be necessary to effectively utilize the additional two strokes for the combustion of overly mixed lean charge mixtures during the second power stroke. It was found that combustion phasing in both power strokes is effectively controlled by the intake valve closure timing. Engine operation under negative valve overlap condition tends to advance the ignition timing of the first power stroke but has minimal effect on the ignition timing of second power stroke. Re-breathing was found to be an effective way to control the ignition timing in second power stroke at a slight expense of the combustion efficiency. The operation of a six-stroke gasoline compression ignition engine could be successfully simulated. In addition, the operability range of the six-stroke gasoline compression ignition engine could be substantially extended by employing the continuously variable valve duration technique.


Author(s):  
Dae Sik Kim ◽  
Ki Hyung Lee ◽  
Chang Sik Lee

The objective of this work is to investigate the effect of premixed fuel ratio on the combustion and emission characteristics in diesel engine by the experimental and numerical method. In order to investigate the effect of various factors such as the mixing ratio, EGR rate, and engine load on the exhaust emissions from the premixed charge compression ignition diesel engine, the injection amount of premixed fuel is controlled by electronic port injection system. The range of mixing ratio between dual fuels used in this study is between 0 and 0.85, and the exhaust gas is recirclulated until 30 percent of EGR rate.


Sign in / Sign up

Export Citation Format

Share Document