Equilibrium of crack growth and wear rates during unlubricated rolling-sliding contact of pearlitic rail steel

Author(s):  
D. I. Fletcher ◽  
J. H. Beynon

It is generally accepted that large rolling contact fatigue cracks in rails do not develop during unlubricated rolling-sliding contact, and damage under these conditions is restricted to wear of the rail steel. However, close examination of a worn rail steel surface reveals the presence of a multitude of wear flakes, the roots of which closely resemble shallow rolling contact fatigue cracks. Experiments have been conducted under unlubricated rolling-sliding conditions to examine the early development of flakes, or cracks, using a laboratory-based, twin-disc test machine to simulate the contact pressure and slip characteristic of the contact between a rail and a locomotive driving wheel. Small defects were found after as few as 125 unlubricated contact cycles. It was found that an equilibrium between crack growth rate and surface wear rate was established after approximately 10 000 cycles, leading to a shallow steady state crack depth. Initial crack growth by ratchetting (accumulation of unidirectional plastic strain until the critical failure strain of the material is reached), followed by shear stress-driven crack growth described by fracture mechanics, was found to be a sequence of mechanisms in qualitative agreement with the observed crack growth and steady state crack depth.

2014 ◽  
Vol 891-892 ◽  
pp. 1545-1550
Author(s):  
Jung Won Seo ◽  
Hyun Kyu Jun ◽  
Seok Jin Kwon ◽  
Dong Hyeong Lee

Rolling contact fatigue and wear of rails are inevitable problems for railway system due to wheel and rail contact. Increased rail wear and increased fatigue damage such as shelling, head check, etc. require more frequent rail exchanges and more maintenance cost. The fatigue crack growth and wear forming on the contact surface are affected by a variety of parameters, such as vertical and traction load, friction coefficient on the surface. Also, wear and crack growth are not independent, but interact on each other. Surface cracks are removed by wear, which can be beneficial for rail, however too much wear shortens the life of rail. Therfore, it is important to understand contact fatigue and wear mechanism in rail steels according to a variety of parameters. In this study, we have investigated fatigue and wear characteriscs of rail steel using twin disc testing. Also the comparative wear behavior of KS60 and UIC 60 rail steel under dry rolling-sliding contact was performed.


Wear ◽  
2017 ◽  
Vol 380-381 ◽  
pp. 240-250 ◽  
Author(s):  
Santiago Maya-Johnson ◽  
Juan Felipe Santa ◽  
Alejandro Toro

2011 ◽  
Vol 488-489 ◽  
pp. 101-104
Author(s):  
Dave Hannes ◽  
B. Alfredsson

The crack path and growth life of surface initiated rolling contact fatigue was investigated numerically based on the asperity point load mechanism. Data for the simulation was captured from a gear contact with surface initiated rolling contact fatigue. The evolvement of contact parameters was derived from an FE contact model where the gear contact had been transferred to an equivalent contact of a cylinder against a plane with an asperity. Crack propagation criteria were evaluated with practically identical crack path predictions. It was noted that the trajectory of largest principal stress in the uncracked material could be used for the path prediction. The mode I fracture mechanism was applicable to the investigated rolling contact fatigue cracks. The simulated path agreed with the spall profile both in the entry details as in the overall shape, which suggested that the point load mechanism was valid not only for initiation but also for rolling contact fatigue crack growth. Different equivalent stress intensity factor ranges were used to estimate the fatigue life, which agreed with the life of the investigated gear wheels.


1988 ◽  
Vol 110 (4) ◽  
pp. 704-711 ◽  
Author(s):  
A. F. Bower

A two-dimensional model of a surface initiated rolling contact fatigue crack has been developed. The model takes into account the effects of frictional locking between the faces of the crack, and the influence of fluid pressure acting on the crack faces. The model has been used to investigate three possible mechanisms for propagating the cracks: mode II crack growth due to the cyclic shear stresses caused by repeated rolling contact; crack growth due to fluid forced into the crack by the load; and crack growth due to fluid trapped inside the crack. The predictions of the theory are compared with the behaviour of contact fatigue cracks.


2006 ◽  
Vol 29 (11) ◽  
pp. 887-900 ◽  
Author(s):  
G. N. HAIDEMENOPOULOS ◽  
A. D. ZERVAKI ◽  
P. TEREZAKIS ◽  
J. TZANIS ◽  
A. E. GIANNAKOPOULOS ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document