Computer aided design and fabrication of models for in vitro studies of vascular fluid dynamics

Author(s):  
C K Chong ◽  
C S Rowe ◽  
S Sivancsan ◽  
A Rattray ◽  
R A Black ◽  
...  
2021 ◽  
Vol 10 (19) ◽  
pp. 4429
Author(s):  
Abdullah Kamel ◽  
Amr Badr ◽  
Gehan Fekry ◽  
James Tsoi

Telescopic systems constructed using computer aided design and computer aided manufacture (CAD/CAM) can overcome many drawbacks associated with conventionally constructed ones. Since retention is considered the most important function of these retainers, this scoping review aimed to discuss and summarize the parameters that affect this function in CAD/CAM-manufactured telescopic crowns and to compare their retention force values with the recommended retention force. An electronic search was done in Pubmed and Google Scholar databases using different keyword combinations to find the related articles. Seventeen articles that follow the eligibility criteria for this review were selected and analyzed for detection of each of the tested parameters and their effect on retention force. The parameters tested in these articles were divided into parameters related to design, manufacturing, material type, and test condition. Regardless of the effect of these parameters, the retention force values recorded in most of the selected studies laid within or were higher than the recommended retention force (2.5–10 N), which indicated the need to design and set the combination of materials of telescopic systems according to oral biomechanics.


Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 664 ◽  
Author(s):  
Leszek A. Dobrzański ◽  
Lech B. Dobrzański ◽  
Anna Achtelik-Franczak ◽  
Joanna Dobrzańska

This paper presents a comparison of the impact of milling technology in the computer numerically controlled (CNC) machining centre and selective laser sintering (SLS) and on the structure and properties of solid Ti6Al4V alloy. It has been shown that even small changes in technological conditions in the SLS manufacturing variant significantly affect changes from two to nearly two and a half times in tensile and bending strengths. Both the tensile and bending strength obtained in the most favourable manufacturing variant by the SLS method is over 25% higher than in the case of cast materials subsequently processed by milling. Plug-and-play SLS conditions provide about 60% of the possibilities. Structural, tribological and electrochemical tests were carried out. In vitro biological tests using osteoblasts confirm the good tendency for the proliferation of live cells on the substrate manufactured under the most favourable SLS conditions. The use of SLS additive technology for the manufacturing of dental implants and abutments made of Ti6Al4V alloy in combination with the digitisation of dental diagnostics and computer-aided design and manufacture of computer-aided design/manufacturing (CAD/CAM) following the idea of Dentistry 4.0 is the best choice of technology for manufacturing of prosthetic and implant devices used in dentistry.


Author(s):  
Fariborz Vafaei ◽  
Alireza Izadi ◽  
Samaneh Abbasi ◽  
Maryam Farhadian ◽  
Zahra Bagheri

Objectives: This study aimed to compare the optical properties of Zolid FX, Katana UTML, and lithium disilicate laminate veneers. Materials and Methods: In this in-vitro experimental study, the maxillary left lateral incisor of a phantom received a laminate veneer preparation. An impression was made, and a die was fabricated using dental stone. The die was scanned using a computer-aided design/computer-aided manufacturing scanner. Ten dies were fabricated from each of the A1, A2, and A3 shades of composite resin. Laminate veneers were fabricated using A1 shade of Katana UTML, Zolid FX, and IPS e.max CAD ceramics (n=10) and placed on composite abutments using bleach and white colors of trial insertion paste (TIP). The optical properties were measured at the incisal, middle, and cervical thirds using a spectrophotometer. Data were analyzed using three-way analysis of variance and Tukey’s test. Results: The effect of laminate material on the L*, a*, and b* parameters was significant in all areas (P<0.001), except for the L* parameter in the middle and cervical thirds. All color parameters were affected by TIP color in all three regions in most samples (P<0.05). The effect of composite abutment shade was also significant in most cases (P<0.05). The effect of laminate material, abutment shade, and TIP color on the b* parameter was significant (P<0.001). The L* parameter was almost the same in the two zirconia and lithium disilicate ceramic groups. Conclusion: The composite abutment shade, TIP color, and laminate material should be carefully selected to achieve optimal aesthetics in laminate veneers.


Author(s):  
Xu Zhang ◽  
David J. J. Toal ◽  
Neil W. Bressloff ◽  
Andy J. Keane ◽  
Frederic Witham ◽  
...  

The following paper presents an overview of the Prometheus design system and its applications to gas turbine combustor design. Unlike a traditional “optimizer-centric” method, Prometheus aims to reduce both the level of workflow complexity and rework by taking a more “geometry-centric” approach to design optimization by shifting the control of script generation away from the optimization program to the computer aided design (CAD) package. Prometheus therefore enables significant geometry changes to be automatically reflected in all subsequent scripts necessary for the analysis of a combustor. Prometheus’ current capabilities include automatic fluid volume generation and aero-thermal and thermo-acoustic network generation as well as automatic mesh and computational fluid dynamics (CFD) script generation.


2019 ◽  
Author(s):  
Frederico Chaves Carvalho ◽  
Paulo Eduardo Ambrósio

The use of whole-cell models in research has the potential to be a powerful tool for scientific discovery, allowing researchers to test hypotheses faster than using in-vitro or in vivo methods. Such models can be considered the equivalent of Computer Aided Design for Biology. However, given their complexity, it is still difficult to employ them as an instrument in investigations. In order to solve this problem, we are developing a framework with the purpose to guide and help scientists through the process of creating whole-cell models faster, enabling them to use these tools as part of their research. This paper brings details of the early stages of the framework’s development process


Sign in / Sign up

Export Citation Format

Share Document