Numerical optimization of a stator vane setting in multistage axial-flow compressors

Author(s):  
J Sun ◽  
R L Elder

This paper presents a numerical methodology for optimizing a stator stagger setting in a multistage axial-flow compressor environment. The method involves simultaneous resetting of several blade rows, which influences overall performance in a complex manner. The paper is presented in four parts: modelling the effect of stagger setting on individual stage performance, overall performance including surge point prediction, stagger setting optimization and numerical examples. The stage performance model is a one-dimensional meanline method where correlations are used to introduce real flow effects. The method uses (experimental or predicted) stage characteristics at design (nominal) setting to generate characteristics at other settings. A stage-by-stage model is used to ‘stack’ the stages together with a dynamic surge prediction model. A direct search method incorporating a sequential weight increasing factor technique (SWIFT) was then used to optimize stagger setting. The objective function in this optimization is penalized externally with an updated factor which helped to accelerate convergence. The methodology has been incorporated into a FORTRAN program and validated using data from a seven-stage aircraft compressor with hypothetical variable stagger vanes. Results have demonstrated that variable stagger is a powerful method to rematch stages which can be used to improve desired overall performance. Parametric studies on the optimization algorithm have also been conducted where it showed numerical stability and fast convergence.

Author(s):  
Ren-Jing Cao ◽  
Sheng Zhou

Rotating stall phenomenon is usually characterized by 3D aerodynamic stability behavior. The earlier models mainly considered the flow effects in terms of 1D and 2D spatial variables. In order to involve the characteristics of the 3D flow of the compressor, it is necessary to improve the existing rotating stall stability models and further develop the models to consider the effects of the 3D disturbance. In this paper, a new aerodynamic stability model concerning the effects of a radial disturbance produced by the compressor, and explaining more mechanisms about the aerodynamic stability of compressor is presented. Using the developed rotating stall stability model, the stall margins are calculated and compared to experimental data for two axial flow compressors. The calculated results show that the developed 3D rotating stall stability model gives better stall margin prediction than that by the 2D model.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Jonathan McGlumphy ◽  
Wing-Fai Ng ◽  
Steven R. Wellborn ◽  
Severin Kempf

The tandem airfoil has potential to do more work as a compressor blade than a single airfoil without incurring significantly higher losses. Although tandem blades are sometimes employed as stators, they have not been used in any known commercial rotors. While the long-term goal for this program is development of a commercially viable tandem rotor, this paper discusses tandem airfoils in subsonic, shock-free rectilinear cascade flow. Existing literature data on tandem airfoils in rectilinear cascades have been compiled and presented in a Lieblein loss versus loading correlation. Large scatter in the data gave motivation to conduct an extensive 2D computational fluid dynamics (CFD) study evaluating the overall performance as a function of the relative positions of the forward and aft airfoils. CFD results were consistent with trends in the open literature, both of which indicate that a properly designed tandem airfoil can outperform a comparable single airfoil on and off design. The general agreement of the CFD and literature data serves as a validation for the computational approach.


Author(s):  
Wei Wang ◽  
Wuli Chu ◽  
Haoguang Zhang ◽  
Yanhui Wu

Recirculating casing treatment (RCT) was studied in a subsonic axial flow compressor experimentally and numerically. The RCT was parameterized with the injector throat height and circumferential coverage percentage (ccp) to investigate its influence on compressor stability and on the overall performance in the experimentation. The injector throat height varied from 2 to 6 times the height of the rotor tip clearance, and the ccp ranged from 8.3% to 25% of the casing perimeter. Various RCT configurations were achieved with a modular design procedure. The rotor casing was instrumented with fast-response pressure transducers to detect the stall inception, rotational speed of stall cells, and pressure flow fields. Whole-passage unsteady simulations were also implemented for the RCT and solid casing to understand the flow details. Results indicate that both the compressor stability and overall performance can be improved through RCT with appropriate geometrical parameters. The effect of injector throat height on the stability depends on the choice of ccp, i.e., interaction effect exists. In general, the RCT with a moderate injector throat height and a large circumferential coverage is the optimal choice. Phase-locked pattern of the casing wall pressure reveals a weakened tip leakage vortex under the effect of RCT compared with the solid casing. The numerical results show that the RCT has a substantial effect on tip blockage even when the blade passages break away from the domain of RCT. The reduction of tip blockage induced by the tip leakage vortex is the main reason for the extension of stable operation range. The unsteadiness of double-leakage flow is detected both in the experiment and in numerical simulations. The pressure fluctuations caused by double-leakage flow are depressed with RCT. This observation indicates reduced losses related with the double-leakage flow. Although the stall inception is not changed by implementing RCT, the stall pattern is altered. The stall with two cells is detected in RCT compared with the solid casing with only one stall cell.


Author(s):  
J. P. Smed ◽  
F. A. Pisz ◽  
J. A. Kain ◽  
N. Yamaguchi ◽  
S. Umemura

As part of the WESTINGHOUSE-MHI 501F Development Program, a new 16 stage axial flow compressor has been designed. Reported here are elements of the aerodynamic and mechanical design as well as general design features. Overall performance test results are also presented which indicate that the compressor met or exceeded all expectations amenable to measurement during the full load shop test program.


Author(s):  
Wei Wang ◽  
Wuli Chu ◽  
Haoguang Zhang ◽  
Yanhui Wu

Parametric studies of recirculating casing treatment were experimentally performed in a subsonic axial flow compressor. The recirculating casing treatment was parameterized with injector throat height, injection position, and circumferential coverage percentage. Eighteen recirculating casing treatments were tested to study the effects on compressor stability and on the compressor overall performance at three blade speeds. The profiles of recirculating casing treatment were optimized to minimize the losses generated by air recirculation. In the experiment, the stalling mass flow rate, total pressure ratio, and adiabatic efficiency of the compressor were measured to study the steady-state effects on the compressor performance of recirculating casing treatments, and static pressure disturbances on the casing wall were monitored to study the influence on stall dynamics. Results indicate that both the compressor stability and overall performance can be improved through recirculating casing treatment with appropriate geometrical parameters for all the test speeds. The influence on stall margin of one geometric parameter often depends on the choice of others, i.e. the interaction effects exist. In general, the recirculating casing treatment with a moderate injector throat and a large circumferential coverage is the optimal choice to enhance compressor stability. The injector of recirculating casing treatment should be placed upstream of the blade tip leading edge and the injector throat height should be lower than four times the rotor tip gap for the benefits of compressor efficiency. At 71% speed, the blade tip loading is decreased through recirculating casing treatment at the operating condition of near peak efficiency and increased near stall. Moreover, the outlet absolute flow angle is reduced in the tip region and enhanced at lower blade spans for both operating conditions. The stall inceptions are not changed with the implementation of recirculating casing treatment for all the test speeds, but the stall patterns are altered at 33% and 53% speeds, i.e. the stall with two cells is detected in the recirculating casing treatment compared with the solid casing with only one stall cell.


1992 ◽  
Vol 114 (2) ◽  
pp. 271-276 ◽  
Author(s):  
J. P. Smed ◽  
F. A. Pisz ◽  
J. A. Kain ◽  
N. Yamaguchi ◽  
S. Umemura

As part of the Westinghouse-MHI 501F development program, a new 16-stage axial flow compressor has been designed. Reported here are elements of the aerodynamic and mechanical design as well as general design features. Overall performance test results are also presented, which indicate that the compressor met or exceeded all expectations amenable to measurement during the full load shop test program.


Author(s):  
Ernesto Benini ◽  
Andrea Toffolo

This paper introduces a cascade-stacking technique for the development of a gas turbine multi-stage axial-flow compressor model. A large database of stationary and rotating cascade performance is first obtained by quasi three-dimensional CFD simulations and used to train neural networks for the prediction of cascade performance under generalized conditions. Then the model directly calculates the operating point of a compressor having known geometry characteristics, including variable inlet guide/stator vane effects, as a function of mass flow rate and rotational speed. The model can also be used as a valuable preliminary design tool, obtaining geometry characteristics by imposing flow patterns.


2017 ◽  
Vol 108 ◽  
pp. 08008
Author(s):  
Xudong Shi ◽  
Hui Liu ◽  
Feiqi Long ◽  
Jie Tang ◽  
Liwen Wang

Author(s):  
Jonathan McGlumphy ◽  
Wing-Fai Ng ◽  
Steven R. Wellborn ◽  
Severin Kempf

The tandem airfoil has potential to do more work as a compressor blade than a single airfoil without incurring significantly higher losses. Although tandem blades are sometimes employed as stators, they have not been used in any known commercial rotors. While the long-term goal for this program is development of a commercially viable tandem rotor, this paper discusses tandem airfoils in subsonic, shock-free rectilinear cascade flow. Existing literature data on tandem airfoils in rectilinear cascades have been compiled and presented in a Lieblein loss versus loading correlation. Large scatter in the data gave motivation to conduct an extensive 2-D CFD study evaluating the overall performance as a function of the relative positions of the forward and aft airfoils. CFD results were consistent with trends in the open literature, both of which indicate that a properly designed tandem airfoil can outperform a comparable single airfoil on- and off-design. The general agreement of the CFD and literature data serves as a validation for the computational approach.


Sign in / Sign up

Export Citation Format

Share Document