Multi-scale representation of tribological surfaces

Author(s):  
P Podsiadlo ◽  
G. W. Stachowiak

Many numerical surface topography analysis methods exist today. However, even for the moderately complicated topography of a tribological surface these methods can provide only limited information. The reason is that tribological surfaces often exhibit a non-stationary and multi-scale nature while the numerical methods currently used work well with surface data exhibiting a stationary random process and provide surface descriptors closely related to a scale at which surface data were acquired. The suitability of different methods, including Fourier transform, windowed Fourier transform, Cohen's class distributions (especially the Wigner-Ville distribution), wavelet transform, fractal methods and a hybrid fractal-wavelet method, for the analysis of tribological surface topographies is investigated in this paper. The method best suited to this purpose has been selected.

2021 ◽  
Vol 4 (3) ◽  
pp. 37-41
Author(s):  
Sayora Ibragimova ◽  

This work deals with basic theory of wavelet transform and multi-scale analysis of speech signals, briefly reviewed the main differences between wavelet transform and Fourier transform in the analysis of speech signals. The possibilities to use the method of wavelet analysis to speech recognition systems and its main advantages. In most existing systems of recognition and analysis of speech sound considered as a stream of vectors whose elements are some frequency response. Therefore, the speech processing in real time using sequential algorithms requires computing resources with high performance. Examples of how this method can be used when processing speech signals and build standards for systems of recognition.Key words: digital signal processing, Fourier transform, wavelet analysis, speech signal, wavelet transform


2013 ◽  
Vol 639-640 ◽  
pp. 1010-1014 ◽  
Author(s):  
Ke Ding ◽  
Ting Peng Chen

The damage detection method based on wavelet multi-scale analysis is presented in the paper. The damage location can be identified by analyzing the multi-scale wavelet transform coefficients of curvatures of mode shapes. The extreme value of wavelet transform coefficients indicates the damage location. But it is difficult to detect the location of defect if the defect is near to the equilibrium position of vibration. In order to solve this problem, we put forward a method which is to add the wavelet transform coefficients of multi modals together. The method can effectively overcome the above problem. Three damage situations of simply supported beam bridge are discussed in the paper. The results show that the peaks of wavelet transform coefficients indicate the damage location of structural. It is possible to pinpoint the damage location based on wavelet multi-scale analysis on curvatures of mode shapes.


2014 ◽  
Vol 214 ◽  
pp. 48-57 ◽  
Author(s):  
Krzysztof Prażnowski ◽  
Sebastian Brol ◽  
Andrzej Augustynowicz

This paper presents a method of identification of non-homogeneity or static unbalance of the structure of a car wheel based on a simple road test. In particular a method the detection of single wheel unbalance is proposed which applies an acceleration sensor fixed on windscreen. It measures accelerations cause by wheel unbalance among other parameters. The location of the sensor is convenient for handling an autonomous device used for diagnostic purposes. Unfortunately, its mounting point is located away from wheels. Moreover, the unbalance forces created by wheels spin are dumped by suspension elements as well as the chassis itself. It indicates that unbalance acceleration will be weak in comparison to other signals coming from engine vibrations, road roughness and environmental effects. Therefore, the static unbalance detection in the standard way is considered problematic and difficult. The goal of the undertaken research is to select appropriate transformations and procedures in order to determine wheel unbalance in these conditions. In this investigation regular and short time Fourier transform were used as well as wavelet transform. It was found that the use of Fourier transforms is appropriate for static condition (constant velocity) but the results proves that the wavelet transform is more suitable for diagnostic purposes because of its ability of producing clearer output even if car is in the state of acceleration or deceleration. Moreover it was proved that in the acceleration spectrum of acceleration measured on the windscreen a significant peak can be found when car runs with an unbalanced wheel. Moreover its frequency depends on wheel rotational frequency. For that reason the diagnostic of single wheel unbalance can be made by applying this method.


Author(s):  
Giovanni Soligo ◽  
Alessio Roccon ◽  
Alfredo Soldati

Abstract Turbulent flows laden with large, deformable drops or bubbles are ubiquitous in nature and in a number of industrial processes. These flows are characterized by a physics acting at many different scales: from the macroscopic length scale of the problem down to the microscopic molecular scale of the interface. Naturally, the numerical resolution of all the scales of the problem, which span about eight to nine orders of magnitude, is not possible, with the consequence that numerical simulations of turbulent multiphase flows impose challenges and require methods able to capture the multi-scale nature of the flow. In this review, we start by describing the numerical methods commonly employed and discussing their advantages and limitations, and then we focus on the issues arising from the limited range of scales that can be possibly solved. Ultimately, the droplet size distribution, a key result of interest for turbulent multiphase flows, is used as a benchmark to compare the capabilities of the different methods and to discuss the main insights that can be drawn from these simulations. Based on this, we define a series of guidelines and best practices that we believe important in the simulation analysis and in the development of new numerical methods.


1999 ◽  
Vol 86 (3) ◽  
pp. 1081-1091 ◽  
Author(s):  
Vincent Pichot ◽  
Jean-Michel Gaspoz ◽  
Serge Molliex ◽  
Anestis Antoniadis ◽  
Thierry Busso ◽  
...  

Heart rate variability is a recognized parameter for assessing autonomous nervous system activity. Fourier transform, the most commonly used method to analyze variability, does not offer an easy assessment of its dynamics because of limitations inherent in its stationary hypothesis. Conversely, wavelet transform allows analysis of nonstationary signals. We compared the respective yields of Fourier and wavelet transforms in analyzing heart rate variability during dynamic changes in autonomous nervous system balance induced by atropine and propranolol. Fourier and wavelet transforms were applied to sequences of heart rate intervals in six subjects receiving increasing doses of atropine and propranolol. At the lowest doses of atropine administered, heart rate variability increased, followed by a progressive decrease with higher doses. With the first dose of propranolol, there was a significant increase in heart rate variability, which progressively disappeared after the last dose. Wavelet transform gave significantly better quantitative analysis of heart rate variability than did Fourier transform during autonomous nervous system adaptations induced by both agents and provided novel temporally localized information.


Author(s):  
Denis Borisovich Fedosenkov ◽  
Anna Alekseevna Simikova ◽  
Boris Andreevich Fedosenkov ◽  
Stanislav Matveevich Kulakov

The article describes the development of a special approach based on using multidimensional wavelet distributions principle to monitor and control the feed dozing processes in the mix preparation unit. As a key component, this approach uses the multidimensional time-frequency Wigner-Ville distribution, which is the part of Cohen's class distributions. The research focuses on signals characterizing mass transfer processes in the form of material flow measuring signals in relevant points of the unit. Wigner-Ville distribution has been shown in time terms as Fourier transform of products of multiplied parts of the signal under consideration for past and future time moments; corresponding distribution for the frequency spectrum is shown as Fourier transform of the products of signal parts for high-frequency and low-frequency fragments of the signal spectrum. It has been noted that when using a complex model of a dozing signal, discrete values (samples) of the latter are considered as its real values. The description of the signal parameters (amplitude, phase, frequency) has been carried out with the help of Hilbert transform. In Cohen's class distributions which represent one-dimensional non-stationary flow signals, the concept of ‘instantaneous frequency’ has been introduced. A graphical explanation for the transformation of a process flow signal from a one-dimensional time domain to a time-frequency 2 D/ 3 D -space is presented. The technology of developing a multidimensional image in the form of Wigner distribution for one-dimensional signals of continuous spiral or screw-type feeders has been examined in detail. There have been considered the features to support Wigner distribution, which allow to guess the presence or absence of time-frequency distribution elements in the interval of signal recording. There has been demonstrated how Wigner distribution can be obtained for a continuous-intermittent feeding signal. It has been concluded that for a certain types of the signal for zero fragments of the latter, non-zero time-frequency elements (i.e. virtual, anomalous ones) appear on the distribution. In addition to Wigner distribution, two other distributions - of Rihachek and Page - are considered. They display the same signal and also contain virtual elements, but in different domains of the time-frequency space. A generalized multidimensional compound signal distribution with a so-called distribution kernel available in it is presented, which includes a correction parameter that allows controlling the intensity of the virtual signal energy.


Sign in / Sign up

Export Citation Format

Share Document