tribological surfaces
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 8)

H-INDEX

11
(FIVE YEARS 2)

This chapter examines the multi-scale nature of biological materials. It is shown that this characteristic motivated several design attempts within the field of tribological surfaces. These designs were not easy to implement because of a lack of technological means. Until the push for nanoscale material manipulation, many designs, although conceived and conceptually verified, were not technologically possible. The leap in technologies that matured within the past decade resurrected efforts to manufacture many discarded designs on a commercial scale. The material within this chapter presents samples of existing bio-inspired tribological surfaces. The examples are either a direct replica of the bio-analogue or represent a modification of the surface through a combination of chemical and geometrical changes.


2020 ◽  
Vol 68 (3) ◽  
Author(s):  
Hugh A. Spikes

Abstract Research on the effects of applied electrical potential on friction and wear, a topic sometimes termed “Triboelectrochemistry”, has been reviewed. Historically, most such research has focussed on aqueous lubricants, whose relatively high electrical conductivities enable use of three-electrode electrochemical kinetic techniques, in which the electrode potential at a single electrode | fluid interface is controlled relative to a suitable reference electrode. This has led to identification of several different mechanisms by which applied electrode potentials can influence friction and wear. Of these, the most practically important are: (i) promotion of adsorption/desorption of polar additives on tribological surfaces by controlling the latters’ surface charges; (ii) stimulation or suppression of redox reactions involving either oxygen or lubricant additives at tribological surfaces. In recent years, there has been growing interest in the effects of applied electrical potentials on rubbing contacts lubricated by non-aqueous lubricants, such as ester- and hydrocarbon-based oils. Two different approaches have been used to study this. In one, a DC potential difference in the mV to V range is applied directly across a thin film, lubricated contact to form a pair of electrode | fluid interfaces. This has been found to promote some additive reactions and to influence friction and wear. However, little systematic exploration has been reported of the underlying processes and generally the electrode potentials at the interfaces have not been well defined. The second approach is to increase the conductivity of non-aqueous lubricants by adding secondary electrolytes and/or using micro/nanoscale electrodes, to enable the use of three-electrode electrochemical methods at single metal | fluid interfaces, with reference and counter electrodes. A recent development has been the introduction of ionic liquids as both base fluids and lubricant additives. These have relatively high electrical conductivities, allowing control of applied electrode potentials of individual metal | fluid interfaces, again with reference and counter electrodes. The broadening use of “green”, aqueous-based lubricants also enlarges the possible future scope of applied electrode potentials in tribology. From research to date, there would appear to be considerable opportunities for using applied electrical potentials both to promote desirable and to supress unwanted lubricant interactions with rubbing surfaces, thereby improving the tribological performance of lubricated machine components. Graphical Abstract


2020 ◽  
Vol 148 ◽  
pp. 106304
Author(s):  
Naoko Takechi Takahashi ◽  
Noritake Isomura ◽  
Satoru Kosaka ◽  
Hiroyuki Mori ◽  
Yasuji Kimoto ◽  
...  

Author(s):  
Dinh Nguyen ◽  
Phi-Ho Lee ◽  
Yang Guo ◽  
Kyung-Hee Park ◽  
Patrick Kwon

This paper evaluates the performances of dry, minimum quantity lubrication (MQL), and MQL with nanofluid conditions in turning of the most common titanium (Ti) alloy, Ti-6Al-4 V, in a solution treated and aged (STA) microstructure. In particular, the nanofluid evaluated here is vegetable (rapeseed) oil mixed with small concentrations of exfoliated graphite nanoplatelets (xGnPs). This paper focuses on turning process that imposes a challenging condition to apply the oil or nanofluid droplets directly onto the tribological surfaces of a cutting tool due to the uninterrupted engagement between tool and work material during cutting. A series of turning experiments was conducted with uncoated carbide inserts, while measuring the cutting forces with a dynamometer under the dry, MQL and MQL with nanofluid conditions supplying oil droplets externally from our MQL device. The inserts are retrieved intermittently to measure the progress of flank and crater wear using a confocal microscopy. This preliminary experimental result shows that MQL and in particular MQL with the nanofluid significantly improve the machinability of Ti alloys even in turning process. However, to attain the best performance, the MQL conditions such as nozzle orientation and the concentration of xGnP must be optimized.


2019 ◽  
Vol 14 (1) ◽  
pp. 8-17 ◽  
Author(s):  
Iman Maleki ◽  
Marcin Wolski ◽  
Tomasz Woloszynski ◽  
Pawel Podsiadlo ◽  
Gwidon Stachowiak

2019 ◽  
Vol 15 (4) ◽  
pp. 757-766 ◽  
Author(s):  
Motoyuki Murashima ◽  
Shouta Yoshino ◽  
Masato Kawaguchi ◽  
Noritsugu Umehara

2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Daniel A. Nelson

This paper presents the design and development of a noncontacting dry-gas mechanical seal for high performance automotive turbocharger applications. Turbochargers are increasingly being incorporated into high performance automobile engines to improve fuel efficiency, enhance energy recovery, and increase horsepower as compared with similar sized naturally aspirated engines. Minimizing the wear rate of tribological surfaces in the turbomachinery is critical to maximizing the reliability and durability of the turbocharger. A dry-gas seal for turbochargers and related technologies with 2–4 cm shafts has been developed. The seal provides a complete barrier between the bearing oil and compressor flow path and is capable of reverse pressure and high speed. The seal performance was evaluated for speeds between 60,000 and 80,000 rpm, pressure differentials between −0.8 (reverse pressure) to 6 bar, and temperatures between 20 and 200 °C. Structural and thermal response of the seal components to the operating conditions are analyzed using finite element methods and the tribological behavior of the seal rings are analyzed using computational fluid dynamics. The design is experimentally validated in a seal test stand. This novel approach reduces turbocharger blowby and shows no measurable wear when compared with piston ring seals.


2018 ◽  
Author(s):  
Dinh Nguyen ◽  
Pil-Ho Lee ◽  
Yang Guo ◽  
Patrick Kwon ◽  
Kyung-Hee Park

This paper evaluates the performances of dry, minimum quantity lubrication (MQL) and MQL with nanofluid in turning the most common titanium (Ti) alloy, Ti-6Al-4V, in a solution treated and aged (STA) microstructure. In particular, the nanofluid evaluated here is vegetable oil (rapeseed) mixed with small concentrations of exfoliated graphite nanoplatelets (xGnP). The focus of this paper is on turning process because it poses a challenging condition to apply oil droplets directly onto the tribological surfaces of a cutting tool due to the continuous engagement of tool and work material. A series of turning experiments was conducted with uncoated carbide inserts while measuring the cutting forces with the dynamometer under various conditions to determine its effectiveness and optimal MQL condition in turning. The worn inserts are retrieved to measure flank and crater wear using confocal microscopy. This preliminary experimental result shows that the use of MQL and nanofluid is effective in improving the machinability of Ti alloys in turning processes.


Sign in / Sign up

Export Citation Format

Share Document