Effects of solid body temperature on the non-Newtonian thermal elastohydrodynamic lubrication behaviour in point contacts

Author(s):  
P Yang ◽  
X Liu
2007 ◽  
Vol 130 (1) ◽  
Author(s):  
Xiaoling Liu ◽  
Peiran Yang

In order to investigate the influence of the body temperature of contacting solids on the lubrication performance of machine components, such as gears and roller bearings, a full numerical solution for the thermal elastohydrodynamic lubrication (EHL) problem in circular contacts under steady state has been achieved. The analysis assumed that the body temperature is different from the temperature of the supplied lubricating oil. The effects of the body temperature, the slide-roll ratio, and the velocity parameter have been discussed. Results show that if the entrainment velocity is not very high, the solid body temperature plays a dominant role in the EHL behavior; however, the influence of the body temperature decreases as the entrainment velocity increases.


Author(s):  
Eduardo de la Guerra Ochoa ◽  
Javier Echávarri Otero ◽  
Enrique Chacón Tanarro ◽  
Benito del Río López

This article presents a thermal resistances-based approach for solving the thermal-elastohydrodynamic lubrication problem in point contact, taking the lubricant rheology into account. The friction coefficient in the contact is estimated, along with the distribution of both film thickness and temperature. A commercial tribometer is used in order to measure the friction coefficient at a ball-on-disc point contact lubricated with a polyalphaolefin base. These data and other experimental results available in the bibliography are compared to those obtained by using the proposed methodology, and thermal effects are analysed. The new approach shows good accuracy for predicting the friction coefficient and requires less computational cost than full thermal-elastohydrodynamic simulations.


Author(s):  
Fadi Ali ◽  
Ivan Křupka ◽  
Martin Hartl

This study presents experimental results on the effect of out-of-contact lubricant channeling on the tribological performance of nonconformal contacts under starved lubrication. Channeling of lubricant was carried out by adding a slider with a limited slot for scraping the displaced lubricant on one of mating surfaces (ball). Thus, the scraped lubricant is forced to flow back into the depleted track through the limited slot resulting in robust replenishment. The measurements have been conducted using optical tribometer (ball-on-disc) equipped with a digital camera and torque sensor. The effect of lubricant channeling was compared to the original contact condition by means of measuring friction and film thickness. The results show that the out-of-contact lubricant channeling leads to a significant enhancement of film thickness and friction reduction under starved conditions. Indeed, the starved elastohydrodynamic lubrication contacts transformed to the fully flooded regime after introducing the flow reconditioning. Moreover, the film thickness decay over time, which is common with starved elastohydrodynamic lubrication contacts, has not been observed in the case of lubricant channeling. However, the beneficial effect of lubricant channeling diminishes as the original contact condition tends to the fully flooded regime. The results of this study can be easily implemented in practical applications such as radial and thrust rolling-element bearings.


A technique using Newton’s rings for mapping the oil film of lubricated point contacts is described. A theoretical value for the film thickness of such contacts in elastohydrodynamic lubrication is derived. The experimental results give the exit constriction predicted by previous theory but never shown in detail. The comparison of theoretical and experimental oil film thicknesses, which is satisfactorily accurate, gives strong evidence for a viscous surface layer some 1000Å thick. This film agrees with the known ‘lubricating power’ of the various oils tested.


Author(s):  
A. D. Chapkov ◽  
C. H. Venner ◽  
A. A. Lubrecht

The influence of surface roughness on the performance of bearings and gears operating under ElastoHydrodynamic Lubrication (EHL) conditions has become increasingly important over the last decade, as the average film thickness decreased due to various influences. Surface features can reduce the minimum film thickness and thus increase the wear. They can also increase the temperature and the pressure fluctuations, which directly affects the component life. In order to describe the roughness geometry inside an EHL contact, the amplitude reduction of harmonic waviness has been studied over the last ten years. This theory currently allows a quantitative prediction of the waviness amplitude and includes the influence of wavelength and contact operating conditions. However, the model assumes a Newtonian behaviour of the lubricant. The current paper makes a first contribution to the extension of the roughness amplitude reduction for EHL point contacts including non-Newtonian effects.


2008 ◽  
Vol 30 (1) ◽  
pp. 41-52 ◽  
Author(s):  
W. Habchi ◽  
D. Eyheramendy ◽  
S. Bair ◽  
P. Vergne ◽  
G. Morales-Espejel

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohamed Abd Alsamieh

Purpose The purpose of this paper is to study the behavior of a single ridge passing through elastohydrodynamic lubrication of point contacts problem for different ridge shapes and sizes, including flat-top, triangular and cosine wave pattern to get an optimal ridge profile. Design/methodology/approach The time-dependent Reynolds’ equation is solved using Newton–Raphson technique. Several shapes of surface feature are simulated and the film thickness and pressure distribution are obtained at every time step by simultaneous solution of the Reynolds’ equation and film thickness equation, including elastic deformation. Film thickness and pressure distribution are chosen to be the criteria in the comparisons. Findings The geometrical characteristics of the ridge play an important role in the formation of lubricant film thickness profile and the pressure distribution through the contact zone. To minimize wear, friction and fatigue life, an optimal ridge profile should have smooth shape with small ridge size. Obtained results are compared with other published numerical results and show a good agreement. Originality/value The study evaluates the performance of different surface features of a single ridge with different shapes and sizes passing through elastohydrodynamic of point contact problem in relation to film thickness and pressure profile.


2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Xiao-Liang Yan ◽  
Xiao-Li Wang ◽  
Yu-Yan Zhang

The lubrication characteristics and fatigue life are numerically analyzed under full film and mixed lubrication regimes, in which the three-dimensional sinusoidal surfaces with changeable wavelengths in x and y directions are used, the geometry changes of the contact areas are described by the various ellipticity, and the non-Newtonian flow of lubricant is described by the sinh-law rheology model. The results show that the influences of characteristic shear stress, wavelength ratio, and ellipticity on lubrication characteristics and fatigue life are remarkable. The effect of surface topography on lubrication characteristics has a close relationship with speed. Increasing the ellipticity and decreasing wavelength ratio and characteristic shear stress can prolong the fatigue life.


Sign in / Sign up

Export Citation Format

Share Document