Chaotic Motions in Resonant Separatrix Zones of Periodically Forced, Axially Travelling, Thin Plates

Author(s):  
A C J Luo

The analytical conditions for chaotic motions of axially travelling, thin plates are obtained from the incremental energy approach. A numerical prediction of chaotic motions from the scenario of the conservative energy varying with excitation amplitude is also presented through the symplectic Runge-Kutta method. The chaotic motions in the primary resonant and homoclinic separatrix zones of axially travelling plates are exhibited through Poincaré mapping sections. From this study, chaotic motion might occur in the small-amplitude oscillations of the axially travelling, thin plates once the geometrical nonlinearity is considered. The chaotic motions of post-buckled plates are much more easily observed than pre-buckled plates. Because the buckling of travelling plates is caused by high translation speeds, chaotic motions of thin plates travelling with high transport speeds can be easily observed.

Author(s):  
T. N. Shiau ◽  
T. H. Young ◽  
J. R. Chang ◽  
K. H. Huang ◽  
C. R. Wang

In this study, the nonlinear dynamic analysis of the multi-mesh gear train with elastic bearing effect is investigated. The gear system includes the three rigid shafts, two gear pairs and elastic bearings. The stiffness and damper coefficient of elastic bearing are considered. The equations of motion of nonlinear time-varying system are derived using Lagrangian approach. The Runge-Kutta Method is employed to determine the system dynamic behaviors including the bifurcation and chaotic motion. The results show that the periodic motion, quasi-periodical motion and chaos can be excited with the elastic bearing effect. Especially, the results also indicate the dynamic response will go from periodic to quasi-periodical before the chaotic motion when the bearing stiffness is increased.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Zengwei Guo ◽  
Pengfei Zi ◽  
Xuanbo He

In order to study the parametric vibration of stayed cables in a long cantilever bridge for a sightseeing platform, nonlinear parametric vibration equations of the stayed cables excited by the vibration of bridge deck and tower are derived. Then, a second-order differential equation is transformed into a first-order ordinary differential equation, which is solved by using the Runge–Kutta method. A finite element model of cables was also built to verify the solution of the Runge–Kutta method. Then, the inherent dynamic characteristics of the full structure and all the cables with different lengths were analyzed to discuss the potential risk of parametric vibration. The longest and shortest cables were taken as examples to explore their nonlinear vibration performance. The effects of damping ratio, excitation position, and amplitude on cables’ nonlinear vibration performance were investigated. The results show that it will be more efficient and convenient to use the Runge–Kutta method to calculate cables’ nonlinear vibration amplitude without loss of accuracy. In addition, short cables have more resonance zones compared to long cables. Especially, with the cable length shortening, the dominant frequencies of the dynamic response and its amplitude increase significantly, and the number of resonance zones also increases. However, excessive excitation amplitude will also cause multiple resonance zones in the cable. The parametric analysis results show that it is effective and efficient to mitigate the nonlinear vibration by adjusting the frequency relationship between the bridge and the cables, rather than by increasing the damping ratio.


2017 ◽  
Vol 13 (2) ◽  
pp. 4657-4670
Author(s):  
W. S. Amer

This work touches two important cases for the motion of a pendulum called Sub and Ultra-harmonic cases. The small parameter method is used to obtain the approximate analytic periodic solutions of the equation of motion when the pivot point of the pendulum moves in an elliptic path. Moreover, the fourth order Runge-Kutta method is used to investigate the numerical solutions of the considered model. The comparison between both the analytical solution and the numerical ones shows high consistency between them.


Author(s):  
Ahmet Yildirim ◽  
Ahmet Gökdogan ◽  
Mehmet Merdan

In this paper, approximate analytical solution of biochemical reaction model is used by the multi-step differential transform method (MsDTM) based on classical differential transformation method (DTM). Numerical results are compared to those obtained by the fourth-order Runge-Kutta method to illustrate the preciseness and effectiveness of the proposed method. Results are given explicit and graphical form.


Author(s):  
Jialin Tian ◽  
Jie Wang ◽  
Yi Zhou ◽  
Lin Yang ◽  
Changyue Fan ◽  
...  

Abstract Aiming at the current development of drilling technology and the deepening of oil and gas exploration, we focus on better studying the nonlinear dynamic characteristics of the drill string under complex working conditions and knowing the real movement of the drill string during drilling. This paper firstly combines the actual situation of the well to establish the dynamic model of the horizontal drill string, and analyzes the dynamic characteristics, giving the expression of the force of each part of the model. Secondly, it introduces the piecewise constant method (simply known as PT method), and gives the solution equation. Then according to the basic parameters, the axial vibration displacement and vibration velocity at the test points are solved by the PT method and the Runge–Kutta method, respectively, and the phase diagram, the Poincare map, and the spectrogram are obtained. The results obtained by the two methods are compared and analyzed. Finally, the relevant experimental tests are carried out. It shows that the results of the dynamic model of the horizontal drill string are basically consistent with the results obtained by the actual test, which verifies the validity of the dynamic model and the correctness of the calculated results. When solving the drill string nonlinear dynamics, the results of the PT method is closer to the theoretical solution than that of the Runge–Kutta method with the same order and time step. And the PT method is better than the Runge–Kutta method with the same order in smoothness and continuity in solving the drill string nonlinear dynamics.


Sign in / Sign up

Export Citation Format

Share Document