Temperature Distributions and Thermal Distortions of Brake Drums

1977 ◽  
Vol 191 (1) ◽  
pp. 169-176 ◽  
Author(s):  
R. J. Ashworth ◽  
M. El-Sherbiny ◽  
T. P. Newcomb

This paper presents calculated results of transient temperature distributions and the resulting drum distortions when band contact occurs between the rubbing surfaces during operation of a brake. The finite element method is used to compute the thermal distortion in drums when incomplete contact arising from previous distortion, manufacturing tolerances or shoe misalignment occurs. The results are compared with those obtained when there is complete contact between lining and drum. Both single and repeated brake applications made at regular intervals with convective cooling are considered.

2001 ◽  
Vol 8 (5) ◽  
pp. 1140-1148 ◽  
Author(s):  
Gordon Tajiri ◽  
Wah-Keat Lee ◽  
Patricia Fernandez ◽  
Dennis Mills ◽  
Lahsen Assoufid ◽  
...  

1983 ◽  
Vol 105 (3) ◽  
pp. 149-154 ◽  
Author(s):  
M. G. Stevenson ◽  
P. K. Wright ◽  
J. G. Chow

The finite element program developed in previous work [1] for calculating the temperature distributions in the chip and tool in metal machining has been extended in its range of application. Specifically, the program no longer needs a flow field as input and it can accommodate a wide range of shear angle and contact lengths. An important feature of this paper is that temperature fields from the finite element method have been compared with temperatures obtained with a previously described metallographic method [7]. This is the first time these two techniques have been used for the same machining conditions and the comparisons are very good.


1973 ◽  
Vol 15 (4) ◽  
pp. 311-320 ◽  
Author(s):  
A. K. Tieu

From the Glansdorff–Prigogine local potential in non-equilibrium thermodynamics (1)† (2), a variational principle for a thin film incompressible flow with viscous dissipation is formulated as the basis of a finite-element method, which is applied to solve the energy equation. Temperature distributions in tapered land and parallel oil films for infinitely wide bearings are obtained by digital computer. The application of the finite-element method in a three-dimensional oil film with side leakage is also discussed.


1974 ◽  
Vol 188 (1) ◽  
pp. 627-638 ◽  
Author(s):  
A. O. Tay ◽  
M. G. Stevenson ◽  
G. De Vahl Davis

Temperature distributions for typical cases of orthogonal machining with a continuous chip were obtained numerically by solving the steady two-dimensional energy equation using the finite element method. The distribution of heat sources in both the primary and secondary zones was calculated from the strain-rate and flow stress distributions. Strain, strain-rate and velocity distributions were calculated from deformed grid patterns obtained from quick-stop experiments. Flow stress was considered as a function of strain, strain-rate and temperature. The chip, workpiece and tool (actual shape and size) were treated as one system and material properties such as density, specific heat and thermal conductivity were considered as functions of temperature.


Nanoscale ◽  
2019 ◽  
Vol 11 (43) ◽  
pp. 20868-20875 ◽  
Author(s):  
Junxiong Guo ◽  
Yu Liu ◽  
Yuan Lin ◽  
Yu Tian ◽  
Jinxing Zhang ◽  
...  

We propose a graphene plasmonic infrared photodetector tuned by ferroelectric domains and investigate the interfacial effect using the finite element method.


Sign in / Sign up

Export Citation Format

Share Document