Integrated CADCAM and Automotive Die and Mould Manufacture

Author(s):  
A R Johnson

Many automotive components are produced in very large quantities using manufacturing processes such as casting, moulding and forging. These processes require tooling which usually has geometrical complexities such as doubly curved surfaces, fillet curves, split lines and draft angles. Traditionally the component design is conveyed to the toolmaker for manufacture of the tooling, using conventional engineering drawings. The paper shows how tooling and component problems can arise due to the inability of conventional two-dimensional engineering drawings to unambiguously define complex three-dimensional shapes. Modern fully integrated computer aided design and computer aided manufacturing (CADCAM) systems may be used to overcome these problems. This is achieved by producing numerically controlled machining information to manufacture the tooling directly from the computer generated component design, thus eliminating the ambiguities associated with conventional engineering drawings. The use of a fully integrated CADCAM system for the design and manufacture of automotive components and tooling is described, and the technical and economic advantages gained from its use are detailed.

2021 ◽  
Vol 11 (4) ◽  
pp. 145
Author(s):  
Nenad Bojcetic ◽  
Filip Valjak ◽  
Dragan Zezelj ◽  
Tomislav Martinec

The article describes an attempt to address the automatized evaluation of student three-dimensional (3D) computer-aided design (CAD) models. The driving idea was conceptualized under the restraints of the COVID pandemic, driven by the problem of evaluating a large number of student 3D CAD models. The described computer solution can be implemented using any CAD computer application that supports customization. Test cases showed that the proposed solution was valid and could be used to evaluate many students’ 3D CAD models. The computer solution can also be used to help students to better understand how to create a 3D CAD model, thereby complying with the requirements of particular teachers.


2015 ◽  
Vol 8 (2) ◽  
Author(s):  
Andrew Johnson ◽  
Xianwen Kong ◽  
James Ritchie

The determination of workspace is an essential step in the development of parallel manipulators. By extending the virtual-chain (VC) approach to the type synthesis of parallel manipulators, this technical brief proposes a VC approach to the workspace analysis of parallel manipulators. This method is first outlined before being illustrated by the production of a three-dimensional (3D) computer-aided-design (CAD) model of a 3-RPS parallel manipulator and evaluating it for the workspace of the manipulator. Here, R, P and S denote revolute, prismatic and spherical joints respectively. The VC represents the motion capability of moving platform of a manipulator and is shown to be very useful in the production of a graphical representation of the workspace. Using this approach, the link interferences and certain transmission indices can be easily taken into consideration in determining the workspace of a parallel manipulator.


2017 ◽  
Vol 9 (7) ◽  
pp. 168781401771038 ◽  
Author(s):  
Isad Saric ◽  
Adil Muminovic ◽  
Mirsad Colic ◽  
Senad Rahimic

This article presents architecture of integrated intelligent computer-aided design system for designing mechanical power-transmitting mechanisms (IICADkmps). The system has been developed in C# program environment with the aim of automatising the design process. This article presents a modern, automated approach to design. Developed kmps modules for calculation of geometrical and design characteristics of mechanical power-transmitting mechanisms are described. Three-dimensional geometrical parameter modelling of mechanical power-transmitting mechanisms was performed in the computer-aided design/computer-aided manufacturing/computer-aided engineering system CATIA V5. The connection between kmps calculation modules and CATIA V5 modelling system was established through initial three-dimensional models – templates. The outputs from the developed IICADkmps system generated final three-dimensional virtual models of mechanical power-transmitting mechanisms. Testing of the developed IICADkmps system was performed on friction, belt, cogged (spur and bevel gears) and chain transmitting mechanisms. Also, connection of the developed IICADkmps system with a device for rapid prototyping and computer numerical control machines was made for the purpose of additional testing and verification of practical use. Physical prototypes of designed characteristic elements of mechanical power-transmitting mechanisms were manufactured. The selected test three-dimensional virtual prototypes, obtained as an output from the developed IICADkmps system, were manufactured on the device for rapid prototyping (three-dimensional colour printer Spectrum Z510) and computer numerical control machines. Finally, at the end of the article, conclusions and suggested possible directions of further research, based on theoretical and practical research results, are presented.


Perception ◽  
1991 ◽  
Vol 20 (6) ◽  
pp. 755-769 ◽  
Author(s):  
Vicki Bruce ◽  
Patrick Healey ◽  
Mike Burton ◽  
Tony Doyle ◽  
Anne Coombes ◽  
...  

The extent to which faces depicted as surfaces devoid of pigmentation and with minimal texture cues (‘head models’) could be matched with photographs (when unfamiliar) and identified (when familiar) was examined in three experiments. The head models were obtained by scanning the three-dimensional surface of the face with a laser, and by displaying the surface measured in this way by using standard computer-aided design techniques. Performance in all tasks was above chance but far from ceiling. Experiment 1 showed that matching of unfamiliar head models with photographs was affected by the resolution with which the surface was displayed, suggesting that subjects based their decisions, at least in part, on three-dimensional surface structure. Matching accuracy was also affected by other factors to do with the viewpoints shown in the head models and test photographs, and the type of lighting used to portray the head model. In experiment 2 further evidence for the importance of the nature of the illumination used was obtained, and it was found that the addition of a hairstyle (not that of the target face) did not facilitate matching. In experiment 3 identification of the head models by colleagues of the people shown was compared with identification of photographs where the hair was concealed and eyes were closed. Head models were identified less well than these photographs, suggesting that the difficulties in their recognition are not solely due to the lack of hair. Women's heads were disproportionately difficult to recognise from the head models. The results are discussed in terms of their implications for the use of such three-dimensional head models in forensic and surgical applications.


1992 ◽  
Vol 8 (02) ◽  
pp. 77-88
Author(s):  
S. Madden ◽  
H. H. Vanderveldt ◽  
J. Jones

Computer Aided Process Planning (CAPP) integrated with Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM) will form the basis of engineering/planning systems of the future. These systems will have the capability to operate in a paperless environment and provide highly optimized process operation plans. The WELDEXCELL System is a prototype of such a system for welding in shipyards. The paper discusses three significant computer technology advances which have been in into the WELDEXCELL prototype. First is a computerized system for allowing multiple knowledge sources (expert systems, humans, data systems, etc.) to work together to solve a common problem (the weld plan). This system is called a "blackboard." The second is a methodology for the blackboard to communicate to the human user. This interface includes full interactive graphics fully integrated to CAD as well as data searches and automatic completion of routine engineering tasks. The third is artificial neural networks (ANS's), which are based on biological neural networks (such as the human brain) and which can do neural reasoning tasks about difficult problems. ANS's offer the opportunity to model highly complex multivariable and nonlinear processes (for example, welding) and provide a means for an engineer to quantitatively assess the process and its operation.


3D Printing ◽  
2017 ◽  
pp. 154-171 ◽  
Author(s):  
Rasheedat M. Mahamood ◽  
Esther T. Akinlabi

Laser additive manufacturing is an advanced manufacturing process for making prototypes as well as functional parts directly from the three dimensional (3D) Computer-Aided Design (CAD) model of the part and the parts are built up adding materials layer after layer, until the part is competed. Of all the additive manufacturing process, laser additive manufacturing is more favoured because of the advantages that laser offers. Laser is characterized by collimated linear beam that can be accurately controlled. This chapter brings to light, the various laser additive manufacturing technologies such as: - selective laser sintering and melting, stereolithography and laser metal deposition. Each of these laser additive manufacturing technologies are described with their merits and demerits as well as their areas of applications. Properties of some of the parts produced through these processes are also reviewed in this chapter.


Sign in / Sign up

Export Citation Format

Share Document