The Evolution of Railway Research and Development at a Heavy Haul Railway

Author(s):  
S Marich ◽  
W Walker

The economic value of research has been well demonstrated on the BHP Iron Ore heavy haul railroad. The research began when the considerable expansion that occurred soon after the start of operations led to accelerated component deterioration. This raised the possibility of having to curtail production. The paper describes how the nature and direction of the research activities have changed over time, with the programmes becoming more proactive rather than reactive.

Brazil constitutes a globally vital but troubled economy. It accounts for the largest GDP in Latin America and ranks among the world’s largest exporters of critical commodities including iron ore, soya, coffee, and beef. In recent years Brazil’s global economic importance has been magnified by a surge in both outward and inward foreign direct investment. This has served to further internationalize what has been historically a relatively closed economy. The purpose of this Handbook is to offer real insight into the Brazil’s economic development in contemporary context, understanding its most salient characteristics and analyzing its structural features across various dimensions. At a more granular level, this volume accomplishes the following tasks. First, it provides an understanding of the economy’s evolution over time and the connection of its current characteristics to this evolution. Second, it analyzes Brazil’s broader place in the global economy, and considers the ways in which this role has changed, and is likely to change, over coming years. Third, reflecting contemporary concerns, the volume offers an understanding, not only of how one of the world’s key economies has developed and transformed itself, but also of the ways in which this process has yet to be completed. The volume thus analyzes the current challenges facing the Brazilian economy and the kinds of issues that need to be tackled for these to be addressed.


2021 ◽  
Vol 298 ◽  
pp. 123905
Author(s):  
Hong Xiao ◽  
Guangpeng Liu ◽  
Dongwei Yan ◽  
Yue Zhao ◽  
Jiaqi Wang ◽  
...  

Author(s):  
Binghuan Xiao ◽  
Xuegeng Mao ◽  
Jinzhao Liu ◽  
Liubin Niu ◽  
Xiaodi Xu ◽  
...  

Author(s):  
Guilin Li ◽  
Di Shi ◽  
Xiaojiang Zhang

<p>Taking the partial cable-stayed bridge with main span of 248 meters which used on the railway coal corridor from western Inner Mongolia to central China as an example. the adaptability and particularity of partial cable-stayed bridge in the span range are analyzed based on structural static analysis theory. Pylon and girder rigid fixity, pier and beam separation system is applied, H- shaped bridge towers, the double cell concrete box girder and the monofilament epoxy coating prestress strand is used in this bridge. The results indicate that stay-cables contribution to the overall stiffness value of 33%. In order to improve the structure performance of the controlling area such as cross section, bridge tower adopt the high tower type system, depth-span ratio is determined to be 1/4.35, C60 high performance concrete is applied. The main pier bearing adopts double 190000 kN large tonnage steel spherical bearings because of the heavy dead loads and the heavy live loads, using the high-performance materials and Partial sealing technique to ensure the bearing durability, stability and long service life. The structure of the bridge meets the requirements of heavy haul railway according to the analysis.</p>


Transport ◽  
2018 ◽  
Vol 33 (3) ◽  
pp. 843-852 ◽  
Author(s):  
Yan Quan SUN ◽  
Maksym SPIRYAGIN ◽  
Colin COLE ◽  
Dwayne NIELSEN

Heavy haul railway track infrastructure are commonly equipped with balloon loops to allow trains to be loaded/unloaded and/or to reverse the direction of travel. The slow operational speed of trains on these sharp curves results in some unique issues regarding the wear process between wheels and rails. A wagon dynamic system model has been applied to simulate the dynamic behaviour in order to study the wheel–rail contact wear conditions. A wheel–rail wear index is used to assess the wear severity. The simulation shows that the lubrication to reduce the wheel–rail contact friction coefficient can significantly reduce the wear severity. Furthermore, the effects of important parameters on wheel–rail contact wear including curve radius, wagon speed and track superelevation have also been considered.


Sign in / Sign up

Export Citation Format

Share Document