Experimental Evaluation of EHD Film Shape and Its Comparison With Numerical Solution

2000 ◽  
Vol 122 (4) ◽  
pp. 689-696 ◽  
Author(s):  
I. Krˇupka ◽  
M. Hartl ◽  
R. Polisˇcˇuk ◽  
J. Cˇerma´k ◽  
M. Lisˇka

Colorimetric interferomentry has been applied to the study of EHD lubrication of point contacts under pure rolling conditions to obtain lubricant film shapes with high accuracy and resolution. An RGB CCD camera together with an extensive image processing software has enabled real time evaluation of chromatic interferograms. The classical numerical isothermal solution of EHD lubrication of point contacts has been used for the comparison with three-dimensional representations of film thickness distributions obtained from experiments. A good agreement was found between experimental and numerical EHD film shapes by comparing lubricant film profiles and positions of minimum film thickness. Both experimental results and numerical solution confirm the ratio between central and minimum film thickness to change significantly with operating conditions. [S0742-4787(00)00404-5]

2021 ◽  
Author(s):  
Wassim Habchi ◽  
Philippe Vergne

Abstract The current work presents a quantitative approach for the prediction of minimum film thickness in elastohydrodynamic lubricated (EHL) circular contacts. In contrast to central film thickness, minimum film thickness can be hard to accurately measure, and it is usually poorly estimated by classical analytical film thickness formulae. For this, an advanced finite-element-based numerical model is used to quantify variations of the central-to-minimum film thickness ratio with operating conditions, under isothermal Newtonian pure-rolling conditions. An ensuing analytical expression is then derived and compared to classical film thickness formulae and to more recent similar expressions. The comparisons confirmed the inability of the former to predict the minimum film thickness, and the limitations of the latter, which tend to overestimate the ratio of central-to-minimum film thickness. The proposed approach is validated against numerical results as well as experimental data from the literature, revealing an excellent agreement with both. This framework can be used to predict minimum film thickness in circular elastohydrodynamic contacts from knowledge of central film thickness, which can be either accurately measured or rather well estimated using classical film thickness formulae.


Author(s):  
A. D. Chapkov ◽  
C. H. Venner ◽  
A. A. Lubrecht

The influence of surface roughness on the performance of bearings and gears operating under ElastoHydrodynamic Lubrication (EHL) conditions has become increasingly important over the last decade, as the average film thickness decreased due to various influences. Surface features can reduce the minimum film thickness and thus increase the wear. They can also increase the temperature and the pressure fluctuations, which directly affects the component life. In order to describe the roughness geometry inside an EHL contact, the amplitude reduction of harmonic waviness has been studied over the last ten years. This theory currently allows a quantitative prediction of the waviness amplitude and includes the influence of wavelength and contact operating conditions. However, the model assumes a Newtonian behaviour of the lubricant. The current paper makes a first contribution to the extension of the roughness amplitude reduction for EHL point contacts including non-Newtonian effects.


Author(s):  
C J Hooke

Most engineering point contacts operate in, or close to, the elastic piezoviscous regime. A general interpolation procedure is presented by which the minimum film thickness in any such contact may be estimated. This procedure matches all existing numerical and experimental results with high accuracy. Design charts are provided and these enable the minimum film thickness to be read directly and also allow the effect of changes in contact geometry and operating conditions to be assessed.


Author(s):  
C J Hooke

The elastohydrodynamic lubrication of point contacts is examined and results for the minimum film thickness are presented for a wide range of radius ratios and operating conditions. The results are compared with the predictions of the appropriate regime formulae. Although these formulae give a reasonable estimate of the contact's behaviour, the actual clearances are often substantially different, particularly close to the regime boundaries. Interpolation equations for seven values of radius ratio are given and these should be sufficient to allow the minimum clearance to be estimated for most isoviscous point contacts.


Author(s):  
C J Hooke

The lowest film thicknesses in heavily loaded point contacts occur in a band around the rear of the contact. The minimum lies either at the centre of this band or at its ends, near the sides of the conjunction. The clearances in the two regions vary independently with changes in contact geometry and operating conditions, but for relatively narrow contacts and for higher loads the clearance at the contact sides is smaller than on the centre-line. This paper examines how this side clearance alters, under heavily loaded conditions, with changes in piezoviscosity.


2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Xiaopeng Wang ◽  
Yuchuan Liu ◽  
Dong Zhu

Elastohydrodynamic lubrication (EHL) is a common mode of fluid-film lubrication in which many machine elements operate. Its thermal behavior is an important concern especially for components working under extreme conditions such as high speeds, heavy loads, and surfaces with significant roughness. Previous thermal EHL (TEHL) studies focused only on the cases with smooth surfaces under the full-film lubrication condition. The present study intends to develop a more realistic unified TEHL model for point contact problems that is capable of simulating the entire transition of lubrication status from the full-film and mixed lubrication all the way down to boundary lubrication with real machined roughness. The model consists of the generalized Reynolds equation, elasticity equation, film thickness equation, and those for lubricant rheology in combination with the energy equation for the lubricant film and the surface temperature equations. The solution algorithms based on the improved semi-system approach have demonstrated a good ability to achieve stable solutions with fast convergence under severe operating conditions. Lubricant film thickness variation and temperature rises in the lubricant film and on the surfaces during the entire transition have been investigated. It appears that this model can be used to predict mixed TEHL characteristics in a wide range of operating conditions with or without three-dimensional (3D) surface roughness involved. Therefore, it can be employed as a useful tool in engineering analyses.


1977 ◽  
Vol 99 (1) ◽  
pp. 82-88 ◽  
Author(s):  
I. Etsion ◽  
D. P. Fleming

A flat sector shaped pad geometry for gas lubricated thrust bearings is analyzed considering both pitch and roll angles of the pad and the true film thickness distribution. Maximum load capacity is achieved when the pad is tilted so as to create a uniform minimum film thickness along the pad trailing edge. Performance characteristics for various geometries and operating conditions of gas thrust bearings are presented in the form of design curves. A comparison is made with the rectangular slider approximation. It is found that this approximation is unsafe for practical design, since it always overestimates load capacity.


Author(s):  
P Eriksson ◽  
V Wikström ◽  
R Larsson

In a previous investigation, grease thickener fibres were tracked as they passed through an elastohydrodynamic (EHD) contact in pure rolling using interferometry in a standard ball-and-disc apparatus. In order to capture single thickener fibres, a high-speed video camera was used. Here, the experiments have been repeated introducing different amounts of side slip for different rolling speeds and a faster video camera capable of capturing 4500 frames/s. The contact was lubricated with a continuous supply of grease. Two greases, based on the same synthetic poly(α-olefin) but thickened with Li-12-OH and lithium complex soap respectively, were studied. It was observed that the thickener fibres were stretched both before entering the contact and as they passed through it. Fibres seem to avoid the minimum film thickness regions and, if they enter, the film is restored immediately after passage.


Author(s):  
Radek Polisˇcˇuk ◽  
Michal Vaverka ◽  
Martin Vrbka ◽  
Ivan Krˇupka ◽  
Martin Hartl

The surface topography plays significant role in lifetime of highly loaded machine parts with lubricated contacts. Many elements like gears, rolling bearings, cams and traction drives operate in mixed lubrication conditions, where the lubricant film behavior closely implies the main practical performance parameters such as friction wear, contact fatigue and scuffing. For prediction of wear and especially contact fatigue, the values and distribution of the pressure in rolling contact are often required. The usual theoretical approach based on numerical solution of physical-mathematical models built around the Reynolds equation can be extremely time consuming, especially when lubricant films are very thin, and contact load and required resolution very high. This study presents a further refined approach to our previously published experimental method, based on on inverse elasticity theory and fast convolution transformation between the lubricant film thickness map and the pressure distribution within the point contact. The experimental film thickness maps of EHD lubricated contacts with smooth and dented surfaces were processed using colorimetric interferometry and validated using numerical solution, in order to calibrate numerical parameters and to find limits of the new approach.


Sign in / Sign up

Export Citation Format

Share Document