scholarly journals Acute toxicity and skin irritation of pyrrolidone derivatives as transdermal penetration enhancer.

1990 ◽  
Vol 38 (8) ◽  
pp. 2308-2310 ◽  
Author(s):  
Hitoshi SASAKI ◽  
Masaki KOJIMA ◽  
Junzo NAKAMURA ◽  
Juichiro SHIBASAKI
2020 ◽  
Vol 14 (3) ◽  
pp. 187-195
Author(s):  
Berhan Mengiste ◽  
Tizazu Zenebe ◽  
Kassahun Dires ◽  
Ermias Lulekal ◽  
Awol Mekonnen ◽  
...  

Background: The Eucalyptus globulus extractions have been used by the traditional healers to treat diseases in the study area. Our previous study revealed that the essential oil has antimicrobial and antifungal activity. This study determined phytochemical analysis, skin irritation, acute and subacute toxicity of Eucalyptus globulus essential oil in mice and rats. Methods: The phytochemicals were analyzed using GC-MS mass spectrometry. The acute toxicity study was determined at three dose levels of 1500 mg/kg, 1750mg/kg, and 2000 mg/kg. The essential oil limit test at a dose of 1000 mg/kg was administered to mice for 28 consecutive days for sub-acute toxicity study. The mice mortality, behavioral change, injury and other signs of illness were recorded once daily. Biochemical parameters were evaluated. Liver and kidney were analyzed for histopathological analyses. The 5% ointment formulation was applied to the rat skin to determine skin irritation effects. Results: The Eucalyptus globulus essential oil showed no effect on the mice at a dose of 1500mg/kg and below, but caused signs of toxicity and death at a dose of 1750mg/kg and above compared to the controls (p<0.05). The LD50 value was 1650 mg/kg. There was no significant difference (p > 0.05) in the body weights, gross abnormalities of the organs and biochemical parameters compared to the control at 1000 mg/kg subacute toxicity study. No histopathological changes were detected in the organs tested. The 5% ointment formulation did not show any abnormal skin reaction. Discussion: In the present study, the Eucalyptus globulus essential oil was comparable with other studies in terms of both chemical composition and its effects on sub-acute and topical application. Conclusion: This toxicity study demonstrated that Eucalyptus globulus essential oil is nontoxic at a relatively lower concentration.


1985 ◽  
Vol 5 (6) ◽  
pp. 1005-1016 ◽  
Author(s):  
Charles R. Clark ◽  
Paul W. Ferguson ◽  
Mark A. Katchen ◽  
Michael W. Dennis ◽  
Douglas K. Craig

In anticipation of the commercialization of its shale oil retorting and upgrading process, Unocal Corp. conducted a testing program aimed at better defining potential health impacts of a shale industry. Acute toxicity studies using rats and rabbits compared the effects of naphtha, Jet-A, JP-4, diesel and “residual” distillate fractions of both petroleum derived crude oils and hydrotreated shale oil. No differences in the acute oral (> 5 g/kg LD50) and dermal (> 2 g/kg LD50) toxicities were noted between the shale and petroleum derived distillates and none of the samples were more than mildly irritating to the eyes. Shale and petroleum products caused similar degrees of mild to moderate skin irritation. None of the materials produced sensitization reactions. The LC50 after acute inhalation exposure to Jet-A, shale naphtha, (> 5 mg/L) and JP-4 distillate fractions of petroleum and shale oils was greater than 5 mg/L. The LC50 of petroleum naphtha (> 4.8 mg/L) and raw shale oil (> 3.95 mg/L) also indicated low toxicity. Results demonstrate that shale oil products are of low acute toxicity, mild to moderately irritating and similar to their petroleum counterparts. The results further demonstrate that hydrotreatment reduces the irritancy of raw shale oil.


2020 ◽  
Vol 154 ◽  
pp. 104677
Author(s):  
Jushan Gao ◽  
Xiaoye Zhao ◽  
Wanghui Jing ◽  
Xinxin Zhang ◽  
Ke Wang ◽  
...  

Polymer ◽  
1992 ◽  
Vol 33 (10) ◽  
pp. 2203-2207 ◽  
Author(s):  
Takao Aoyagi ◽  
Yuriko Takamura ◽  
Tomoko Nakamura ◽  
Yuichi Yabuchi ◽  
Yu Nagase

2021 ◽  
Vol 11 (5-S) ◽  
pp. 176-187
Author(s):  
Sudip Das ◽  
Koushik Sen Gupta

The drug delivery within the stratum corneum of the skin prevails a challenging area for the pharmaceutical field, especially to the formulation scientists. Several investigations revealed that the lipid domain, which is the integral component of the transport barrier, must be breached if it is to be delivered transdermally at an appropriate rate. In particular, transdermal drug delivery has intrigued researchers with multiple suggestions because multiple dosing or insufficient drug delivery or characteristics of various drugs often results in low therapeutic effects. The application of permeation or penetration enhancers may prolong the number of drugs that can be offered topically. The application of any natural permeation enhancer is innoxious over the artificial permeation enhancers. The natural permeation enhancers are investigated, so notably include essential oils, terpenes, terpenoids, fatty acid esters, etc., have a certain effect in the transdermal drug delivery system. Despite decades of investigation on the natural chemical penetration enhancer, the researchers could not establish the effectiveness of natural penetration enhancers clinically due to the lack of in vivo models. Several factors, like solubility, solvent selection, experimental models, etc., has restricted the application and development of natural penetration enhancers in topical drug delivery systems, especially in the patches. Therefore, further investigation needs to do on skin irritation to decide natural penetration enhancers controlling optimum enhancement effects with minimal skin irritation. This review gives a comprehensive literature survey on naturally obtained chemical penetration enhancers and their future possibilities. Keywords: Topical Drug delivery system, Natural products, Penetration enhancer, Stratum corneum, In vivo models.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ramakant Joshi ◽  
Navneet Garud

Abstract Background Present investigation for research was to develop matrix-type transdermal drug delivery system of flurbiprofen (FBP) with the various ratio of matrix polymers (hydrophilic and hydrophobic), the concentration of plasticizer and natural penetration enhancer by Box–Behnken statistical design to investigate the combined outcome of selected independent variables for effective management of rheumatoid arthritis. The influence of a binary mixture of polymers, plasticizer and penetration enhancer on physicochemical considerations including thickness, tensile strength, percent elongation, weight variation, percent moisture content, percent moisture uptake, water vapour transmission rate, folding endurance, drug content, in vitro drug dissolution study and then ex vivo drug permeation study was evaluated. Results The study demonstrated that the tensile strength of films improved by matrix polymer ratio and to a slighter gradation in the rise of plasticizer and natural penetration enhancer. Ex vivo drug permeation study was accompanied via excised porcine skin as a permeation barrier in Franz diffusion cell. Ex vivo drug permeation study indicated that matrix polymer ratio (HPMC K15M:ERL100) at 3:1 and natural penetration enhancer (d-limonene) at highest concentration 7.5% w/w containing formulation FBPT7 delivered maximum flux and supplementary improved the permeation of drug. The result of the skin irritation test revealed that the developed formulation is free from any type of skin irritation effects like erythema and oedema. Conclusion Based on the findings of this research, it can be established that a well-controlled release and very effective skin penetration of the drug was accomplished by the film FBPT7 in the existence of permeation enhancers for prolonged periods.


Sign in / Sign up

Export Citation Format

Share Document