625 CONTRIBUTION OF STRENGTH AND PEAK OXYGEN UPTAKE TO POWER OUTPUT DURING ARM, LEG, AND COMBINED ARM AND LEG EXERCISE

1993 ◽  
Vol 25 (Supplement) ◽  
pp. S112
Author(s):  
C. F. Fromme ◽  
R. L. Jensen
1991 ◽  
Vol 23 (10) ◽  
pp. 1201???1209 ◽  
Author(s):  
H. E. J. VEEGER ◽  
M. HADJ YAHMED ◽  
L. H. V. VAN DER WOUDE ◽  
P. CHARPENTIER

2010 ◽  
Vol 110 (3) ◽  
pp. 645-649 ◽  
Author(s):  
Jérémy B. J. Coquart ◽  
Roger G. Eston ◽  
Jean-Marie Grosbois ◽  
Christine Lemaire ◽  
Alain-Eric Dubart ◽  
...  

2020 ◽  
Vol 15 (7) ◽  
pp. 964-970
Author(s):  
David Barranco-Gil ◽  
Lidia B. Alejo ◽  
Pedro L. Valenzuela ◽  
Jaime Gil-Cabrera ◽  
Almudena Montalvo-Pérez ◽  
...  

Purpose: To analyze the effects of different warm-up protocols on endurance-cycling performance from an integrative perspective (by assessing perceptual, neuromuscular, physiological, and metabolic variables). Methods: Following a randomized crossover design, 15 male cyclists (35 [9] y; peak oxygen uptake [VO2peak] 66.4 [6.8] mL·kg−1·min−1) performed a 20-minute cycling time trial (TT) preceded by no warm-up, a standard warm-up (10 min at 60% of VO2peak), or a warm-up that was intended to induce potentiation postactivation (PAP warm-up; 5 min at 60% of VO2peak followed by three 10-s all-out sprints). Study outcomes were jumping ability and heart-rate variability (both assessed at baseline and before the TT), TT performance (mean power output), and perceptual (rating of perceived exertion) and physiological (oxygen uptake, muscle oxygenation, heart-rate variability, blood lactate, and thigh skin temperature) responses during and after the TT. Results: Both standard and PAP warm-up (9.7% [4.7%] and 12.9% [6.5%], respectively, P < .001), but not no warm-up (−0.9% [4.8%], P = .074), increased jumping ability and decreased heart-rate variability (−7.9% [14.2%], P = .027; −20.3% [24.7%], P = .006; and −1.7% [10.5%], P = .366). Participants started the TT (minutes 0–3) at a higher power output and oxygen uptake after PAP warm-up compared with the other 2 protocols (P < .05), but no between-conditions differences were found overall for the remainder of outcomes (P > .05). Conclusions: Compared with no warm-up, warming up enhanced jumping performance and sympathetic modulation before the TT, and the inclusion of brief sprints resulted in a higher initial power output during the TT. However, no warm-up benefits were found for overall TT performance or for perceptual or physiological responses during the TT.


2005 ◽  
Vol 30 (2) ◽  
pp. 157-171 ◽  
Author(s):  
Craig A. Williams ◽  
Sébastien Ratel ◽  
Neil Armstrong

The aim of this study was to determine whether peak oxygen uptake [Formula: see text] attained in a 90-s maximal intensity cycle sprint is comparable to that from a conventional ramp test. Sixteen participants (13 boys and 3 girls, 14.6 ± 0.4 yr) volunteered for the study. On Day 1 they completed a [Formula: see text] test to exhaustion using a 25 W∙min−1 ramp protocol beginning at 50 W. Peak [Formula: see text] was defined as the highest [Formula: see text] value achieved, and aerobic power [Formula: see text] as the power output of the final 30 s. On Day 2 the participants completed two 90-s maximal sprints (S1 and S2). A 45-min recovery period separated each sprint. Mean oxygen uptake over the last 10 s of each sprint was determined as [Formula: see text] and minimum power (MinP-30 s) as the mechanical power attained in the final 30 s. A one-way ANOVA was used to analyse differences between S1, S2, and the ramp test for [Formula: see text] and MinP-30 s. Peak [Formula: see text] was not significantly different between the ramp, S1, or S2 (2.64 ± 0.5, 2.49 ± 0.5, and 2.53 ± 0.5 L∙min−1, respectively, p > 0.68). The S1 and S2 [Formula: see text] scores represented 91 ± 10% and 92 ± 10% of the ramp aerobic test. The MinP-30 s for S1 and S2 were significantly lower than the [Formula: see text] of the ramp test, p < 0.05. Hence, for researchers solely interested in [Formula: see text] values, a shorter but more intensive protocol provides an alternative method to the traditional ramp aerobic test. Key words: aerobic, anaerobic, mechanical power, pedaling


2019 ◽  
Vol 44 (2) ◽  
pp. 194-199 ◽  
Author(s):  
Catherine F. Notarius ◽  
Philip J. Millar ◽  
Connor J. Doherty ◽  
Anthony V. Incognito ◽  
Nobuhiko Haruki ◽  
...  

Muscle sympathetic nerve activity (MSNA) at rest increases with age. However, the influence of age on MSNA recorded during dynamic leg exercise is unknown. We tested the hypothesis that aging attenuates the sympatho-inhibitory response observed in young subjects performing mild to moderate 1-leg cycling. After predetermining peak oxygen uptake, we compared contra-lateral fibular nerve MSNA during 2 min each of mild (unloaded) and moderate (30%–40% of the work rate at peak oxygen uptake, halved for single leg) 1-leg cycling in 18 young (age, 23 ± 1 years (mean ± SE)) and 18 middle-aged (age, 57 ± 2 years) sex-matched healthy subjects. Mean height, weight, resting heart rate, systolic blood pressure, and percent predicted peak oxygen uptake were similar between groups. Middle-aged subjects had higher resting MSNA burst frequency and incidence (P < 0.001) and diastolic blood pressure (P = 0.04). During moderate 1-leg cycling, older subjects’ systolic blood pressure increased more (+21 ± 5 vs. +10 ± 1 mm Hg; P = 0.02) and their fall in MSNA burst incidence was amplified (−19 ± 2 vs. −11 ± 2 bursts/100 heart beats; P = 0.01) but because heart rate rose less (+15 ± 3 vs. +19 ± 2 bpm; P = 0.03), exercise induced similar reductions in burst frequency (P = 0.25). Contrary to our initial hypothesis, with advancing age, mild- to moderate-intensity dynamic leg exercise elicits a greater rise in systolic blood pressure and a larger fall in MSNA.


Motricidade ◽  
2018 ◽  
Vol 13 (4) ◽  
pp. 39
Author(s):  
Nuno Almeida ◽  
Joana Reis ◽  
João Beckert ◽  
Miguel Moreira ◽  
Francisco Alves

The purpose of this study was to verify if competitive performance status was associated to different levels of specific aerobic fitness in Portuguese surfboard riders. Six recreational surfers (age: 32.3±3.1 years; body mass: 73.2±7.8kg; height: 1.75±0.05m) and six competitive international level surfers (age: 25±8.4years; body mass: 68.5±3.8kg; height: 1.74±0.05m) performed a maximal continuous incremental paddling test consisting of two-minute steps starting at 20W, with increments of 10W, for determination of peak oxygen uptake and maximal aerobic power. Ventilatory threshold and respiratory compensation point with corresponding heart rate and power output were also determined. Elite surfers presented higher values for peak oxygen uptake (43.6±7.9 ml.kg-1.min-1) than recreational surfers (31.1±7.4 ml.kg-1.min-1, p=0.01) however, there were no differences (p> 0.05) between groups for maximal aerobic power (elite: 76.6±18.6W; recreational: 76.6±16.6W). No significant differences between the power output at which ventilatory threshold or respiratory compensation point occurred but elite surfers reached ventilation threshold with 22.5±5.8 ml.kg-1.min-1 which was significantly higher than recreational surfers (16±3.7 ml.kg-1.min-1). These findings show that elite surfers have higher values of peak oxygen uptake than recreational surfers which suggest a higher aerobic adaptation that may be related to the different amount of exercise volume undertaken.


Sign in / Sign up

Export Citation Format

Share Document