91 EFFECT OF A COMPETITIVE SEASON ON LEAN BODY MASS (LBM) OF MALE CROSS COUNTRY RUNNERS

1994 ◽  
Vol 26 (Supplement) ◽  
pp. S16
Author(s):  
R. A. Nickamp ◽  
J. T. Baer
2021 ◽  
Vol 15 (10) ◽  
pp. 3245-3249
Author(s):  
Gökhan Atasever ◽  
Fatih Kiyici ◽  
Deniz Bedir ◽  
Fatih Ağduman

Aim: Biathlon is a sport that combines cross-country skiing and rifle shooting. The athlete is fast in the cross-country skiing section, in the gun shooting section, the heart rate should be low. This study aims to determine the hitting rate of the shots made with different training loads on low altitude in elite biathletes in terms of maximum speed and physiological variables. Methods: To evaluate shooting performances first with the resting pulse and then after 2.5 km skiing respectively with 50%, 70% and 100% pulse rate which is separately calculated for each athlete according to karvonen formula. Results: Our findings show that while there was negative relation between maximum speed and body fat there was a positive relation with lean body mass. It has been determined that low body fat percentage and high lean body mass are effective at the athletes’ maximum speed and the pulse level with the highest target shooting accuracy rate was at rest and 70% in the second level. Conclusion: Since the pulse of the athlete who comes to the shooting area cannot be reduced to a resting level in a short time, focusing the 70% pulse zone may be beneficial in terms of shooting accuracy and acceleration after the shot. The lowest results in target shooting accuracy were seen at 50% and 100% loads. Keywords: Athletes, performance, heart, rate, lean body mass.


2019 ◽  
Vol 51 (Supplement) ◽  
pp. 25
Author(s):  
Jesse A. Goodrich ◽  
Sewan Kim ◽  
Dillon J. Frisco ◽  
Kimberly Detwiler ◽  
Miguel Rueda ◽  
...  

2014 ◽  
Vol 46 ◽  
pp. 951
Author(s):  
Katy Neves ◽  
A Wayne Johnson ◽  
Joseph William Myrer ◽  
Coulter Neves ◽  
Jarom Bridges ◽  
...  

1995 ◽  
Vol 5 (1) ◽  
pp. 45-55 ◽  
Author(s):  
Robert A. Niekamp ◽  
Janine T. Baer

The purpose of this study was to determine the dietary adequacy of 12 collegiate cross-country runners during a competitive season. Four-day diet records were collected twice during the season and analyzed for total daily energy, macronutrients, vitamin A, vitamin C, thiamin, riboflavin, niacin, vitamin , folate, iron, magnesium, zinc, and calcium. Mean energy intake (3,248 ± 590 kcal) was not significantly different from estimated mean energy expenditure (3,439 ± 244 kcal). Week 8 mean prealbumin levels were within normal limits (26.8 ± 2.8 mg/dl). Mean daily CHO intake was 497 ± 134 g/day (61.2%). Three to four hours prior to competition a pre-race meal was consumed; it contained 82 ± 47 g CHO. Posteompetition CHO intake was delayed an average 2.5 hr; at that time approximately 2.6 ± 0.69 g CHO/kg body weight was consumed. The athletes appeared to demonstrate dietary adequacy with the exception of timing of posteompetition carbohydrate consumption.


2017 ◽  
Vol 52 (10) ◽  
pp. 902-909 ◽  
Author(s):  
Sandra Fowkes Godek ◽  
Katherine E. Morrison ◽  
Gregory Scullin

Context:  Ideal and acceptable cooling rates in hyperthermic athletes have been established in average-sized participants. Football linemen (FBs) have a small body surface area (BSA)-to-mass ratio compared with smaller athletes, which hinders heat dissipation. Objective:  To determine cooling rates using cold-water immersion in hyperthermic FBs and cross-country runners (CCs). Design:  Cohort study. Setting:  Controlled university laboratory. Patients or Other Participants:  Nine FBs (age = 21.7 ± 1.7 years, height = 188.7 ± 4 cm, mass = 128.1 ± 18 kg, body fat = 28.9% ± 7.1%, lean body mass [LBM] = 86.9 ± 19 kg, BSA = 2.54 ± 0.13 m2, BSA/mass = 201 ± 21.3 cm2/kg, and BSA/LBM = 276.4 ± 19.7 cm2/kg) and 7 CCs (age = 20 ± 1.8 years, height = 176 ± 4.1 cm, mass = 68.7 ± 6.5 kg, body fat = 10.2% ± 1.6%, LBM = 61.7 ± 5.3 kg, BSA = 1.84 ± 0.1 m2, BSA/mass = 268.3 ± 11.7 cm2/kg, and BSA/LBM = 298.4 ± 11.7 cm2/kg). Intervention(s):  Participants ingested an intestinal sensor, exercised in a climatic chamber (39°C, 40% relative humidity) until either target core temperature (Tgi) was 39.5°C or volitional exhaustion was reached, and were immediately immersed in a 10°C circulated bath until Tgi declined to 37.5°C. A general linear model repeated-measures analysis of variance and independent t tests were calculated, with P < .05. Main Outcome Measure(s):  Physical characteristics, maximal Tgi, time to reach 37.5°C, and cooling rate. Results:  Physical characteristics were different between groups. No differences existed in environmental measures or maximal Tgi (FBs = 39.12°C ± 0.39°C, CCs = 39.38°C ± 0.19°C; P = .12). Cooling times required to reach 37.5°C (FBs = 11.4 ± 4 minutes, CCs = 7.7 ± 0.06 minutes; P < .002) and therefore cooling rates (FBs = 0.156°C·min−1 ± 0.06°C·min−1, CCs = .255°C·min−1 ± 0.05°C·min−1; P < .002) were different. Strong correlations were found between cooling rate and body mass (r = −0.76, P < .001), total BSA (r = −0.74, P < .001), BSA/mass (r = 0.73, P < .001), LBM/mass (r = 0.72, P < .002), and LBM (r = −0.72, P < .002). Conclusions:  With cold-water immersion, the cooling rate in CCs (0.255°C·min−1) was greater than in FBs (0.156°C·min−1); however, both were considered ideal (≥0.155°C·min−1). Athletic trainers should realize that it likely takes considerably longer to cool large hyperthermic American-football players (>11 minutes) than smaller, leaner athletes (7.7 minutes). Cooling rates varied widely from 0.332°C·min−1 in a small runner to only 0.101°C·min−1 in a lineman, supporting the use of rectal temperature for monitoring during cooling.


2021 ◽  
Vol 2 ◽  
Author(s):  
Lace E. Luedke ◽  
Mitchell J. Rauh

Introduction: Cross country is a popular high school and collegiate sport with a high rate of running-related injuries (RRI). Among high school runners, higher step rates have been associated with greater running experience and decreased body height, and lower step rates have been prospectively associated with increased risk of shin RRI. These associations have not been reported in collegiate cross country runners. The purpose of this study was to compare step rates between collegiate and high school cross country runners. Secondary objectives included determining if step rates in collegiate runners were related to experience and anthropometric variables, and whether their self-selected step rates were prospectively related to lower extremity RRI.Materials and methods: Twenty-nine NCAA Division III collegiate cross country runners (13 females, mean ± SD age 19.7 ± 1.3 years) completed a survey and ran at their self-selected speed. Step rate was assessed with Polar RCX5 wristwatches and S3+ Stride Sensors™ on the first day of the season. Runners were followed during the season for occurrence of time-loss lower extremity RRI. A cohort of 68 high school runners was used for comparison of step rates at their self-selected speeds.Results: Collegiate runners' self-selected step rates (177.1 ± 7.2 spm [steps per minute]) were higher than high school runners' (171.3 ± 8.3 spm) (p = 0.01). Collegiate runners ran at higher self-selected speeds (4.6 ± 0.5 m/s) than the high school runners (3.8 ± 0.5 m/s) (p < 0.001). A lower percentage of collegiate runners ran at ≤166 spm than high school runners. Body mass was negatively correlated with step rate in collegiate runners. During the season, 41.3% of collegiate runners experienced lower extremity RRI. Step rates for collegiate runners who did not experience RRI (178.9 ± 7.7 spm) were not significantly higher than runners who did experience RRI (174.5 ± 5.7 spm) (p = 0.10).Discussion: Higher step rates were found in collegiate than high school runners, but the difference was partially explained by higher self-selected running speeds. Thus, variations in step rate between high school and collegiate runners may be expected based on experience, speed, and body mass.


2017 ◽  
Vol 28 (1) ◽  
pp. 303-310 ◽  
Author(s):  
L. E. Stanley ◽  
A. Lucero ◽  
T. C. Mauntel ◽  
M. Kennedy ◽  
N. Walker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document