scholarly journals Cold-Water Immersion Cooling Rates in Football Linemen and Cross-Country Runners With Exercise-Induced Hyperthermia

2017 ◽  
Vol 52 (10) ◽  
pp. 902-909 ◽  
Author(s):  
Sandra Fowkes Godek ◽  
Katherine E. Morrison ◽  
Gregory Scullin

Context:  Ideal and acceptable cooling rates in hyperthermic athletes have been established in average-sized participants. Football linemen (FBs) have a small body surface area (BSA)-to-mass ratio compared with smaller athletes, which hinders heat dissipation. Objective:  To determine cooling rates using cold-water immersion in hyperthermic FBs and cross-country runners (CCs). Design:  Cohort study. Setting:  Controlled university laboratory. Patients or Other Participants:  Nine FBs (age = 21.7 ± 1.7 years, height = 188.7 ± 4 cm, mass = 128.1 ± 18 kg, body fat = 28.9% ± 7.1%, lean body mass [LBM] = 86.9 ± 19 kg, BSA = 2.54 ± 0.13 m2, BSA/mass = 201 ± 21.3 cm2/kg, and BSA/LBM = 276.4 ± 19.7 cm2/kg) and 7 CCs (age = 20 ± 1.8 years, height = 176 ± 4.1 cm, mass = 68.7 ± 6.5 kg, body fat = 10.2% ± 1.6%, LBM = 61.7 ± 5.3 kg, BSA = 1.84 ± 0.1 m2, BSA/mass = 268.3 ± 11.7 cm2/kg, and BSA/LBM = 298.4 ± 11.7 cm2/kg). Intervention(s):  Participants ingested an intestinal sensor, exercised in a climatic chamber (39°C, 40% relative humidity) until either target core temperature (Tgi) was 39.5°C or volitional exhaustion was reached, and were immediately immersed in a 10°C circulated bath until Tgi declined to 37.5°C. A general linear model repeated-measures analysis of variance and independent t tests were calculated, with P < .05. Main Outcome Measure(s):  Physical characteristics, maximal Tgi, time to reach 37.5°C, and cooling rate. Results:  Physical characteristics were different between groups. No differences existed in environmental measures or maximal Tgi (FBs = 39.12°C ± 0.39°C, CCs = 39.38°C ± 0.19°C; P = .12). Cooling times required to reach 37.5°C (FBs = 11.4 ± 4 minutes, CCs = 7.7 ± 0.06 minutes; P < .002) and therefore cooling rates (FBs = 0.156°C·min−1 ± 0.06°C·min−1, CCs = .255°C·min−1 ± 0.05°C·min−1; P < .002) were different. Strong correlations were found between cooling rate and body mass (r = −0.76, P < .001), total BSA (r = −0.74, P < .001), BSA/mass (r = 0.73, P < .001), LBM/mass (r = 0.72, P < .002), and LBM (r = −0.72, P < .002). Conclusions:  With cold-water immersion, the cooling rate in CCs (0.255°C·min−1) was greater than in FBs (0.156°C·min−1); however, both were considered ideal (≥0.155°C·min−1). Athletic trainers should realize that it likely takes considerably longer to cool large hyperthermic American-football players (>11 minutes) than smaller, leaner athletes (7.7 minutes). Cooling rates varied widely from 0.332°C·min−1 in a small runner to only 0.101°C·min−1 in a lineman, supporting the use of rectal temperature for monitoring during cooling.

Medicina ◽  
2020 ◽  
Vol 56 (10) ◽  
pp. 539
Author(s):  
Yuri Hosokawa ◽  
Luke N. Belval ◽  
William M. Adams ◽  
Lesley W. Vandermark ◽  
Douglas J. Casa

Background and objectives: Exertional heat stroke (EHS) is a potentially lethal, hyperthermic condition that warrants immediate cooling to optimize the patient outcome. The study aimed to examine if a portable cooling vest meets the established cooling criteria (0.15 °C·min−1 or greater) for EHS treatment. It was hypothesized that a cooling vest will not meet the established cooling criteria for EHS treatment. Materials and Methods: Fourteen recreationally active participants (mean ± SD; male, n = 8; age, 25 ± 4 years; body mass, 86.7 ± 10.5 kg; body fat, 16.5 ± 5.2%; body surface area, 2.06 ± 0.15 m2. female, n = 6; 22 ± 2 years; 61.3 ± 6.7 kg; 22.8 ± 4.4%; 1.66 ± 0.11 m2) exercised on a motorized treadmill in a hot climatic chamber (ambient temperature 39.8 ± 1.9 °C, relative humidity 37.4 ± 6.9%) until they reached rectal temperature (TRE) >39 °C (mean TRE, 39.59 ± 0.38 °C). Following exercise, participants were cooled using either a cooling vest (VEST) or passive rest (PASS) in the climatic chamber until TRE reached 38.25 °C. Trials were assigned using randomized, counter-balanced crossover design. Results: There was a main effect of cooling modality type on cooling rates (F[1, 24] = 10.46, p < 0.01, η2p = 0.30), with a greater cooling rate observed in VEST (0.06 ± 0.02 °C·min−1) than PASS (0.04 ± 0.01 °C·min−1) (MD = 0.02, 95% CI = [0.01, 0.03]). There were also main effects of sex (F[1, 24] = 5.97, p = 0.02, η2p = 0.20) and cooling modality type (F[1, 24] = 4.38, p = 0.047, η2p = 0.15) on cooling duration, with a faster cooling time in female (26.9 min) than male participants (42.2 min) (MD = 15.3 min, 95% CI = [2.4, 28.2]) and faster cooling duration in VEST than PASS (MD = 13.1 min, 95% CI = [0.2, 26.0]). An increased body mass was associated with a decreased cooling rate in PASS (r = −0.580, p = 0.03); however, this association was not significant in vest (r = −0.252, p = 0.39). Conclusions: Although VEST exhibited a greater cooling capacity than PASS, VEST was far below an acceptable cooling rate for EHS treatment. VEST should not replace immediate whole-body cold-water immersion when EHS is suspected.


2018 ◽  
Vol 43 (8) ◽  
pp. 857-860
Author(s):  
Martin P. Poirier ◽  
Sean R. Notley ◽  
Andreas D. Flouris ◽  
Glen P. Kenny

We examined if physical characteristics could be used to predict cooling time during cold water immersion (CWI, 2 °C) following exertional hyperthermia (rectal temperature ≥39.5 °C) in a physically heterogeneous group of men and women (n = 62). Lean body mass was the only significant predictor of cooling time following CWI (R2 = 0.137; P < 0.001); however, that prediction did not provide the precision (mean residual square error: 3.18 ± 2.28 min) required to act as a safe alternative to rectal temperature measurements.


2016 ◽  
Vol 51 (3) ◽  
pp. 252-257 ◽  
Author(s):  
Cory L. Butts ◽  
Brendon P. McDermott ◽  
Brian J. Buening ◽  
Jeffrey A. Bonacci ◽  
Matthew S. Ganio ◽  
...  

Exercise conducted in hot, humid environments increases the risk for exertional heat stroke (EHS). The current recommended treatment of EHS is cold-water immersion; however, limitations may require the use of alternative resources such as a cold shower (CS) or dousing with a hose to cool EHS patients.Context: To investigate the cooling effectiveness of a CS after exercise-induced hyperthermia.Objective: Randomized, crossover controlled study.Design: Environmental chamber (temperature = 33.4°C ± 2.1°C; relative humidity = 27.1% ± 1.4%).Setting: Seventeen participants (10 male, 7 female; height = 1.75 ± 0.07 m, body mass = 70.4 ± 8.7 kg, body surface area = 1.85 ± 0.13 m2, age range = 19–35 years) volunteered.Patients or Other Participants: On 2 occasions, participants completed matched-intensity volitional exercise on an ergometer or treadmill to elevate rectal temperature to ≥39°C or until participant fatigue prevented continuation (reaching at least 38.5°C). They were then either treated with a CS (20.8°C ± 0.80°C) or seated in the chamber (control [CON] condition) for 15 minutes.Intervention(s): Rectal temperature, calculated cooling rate, heart rate, and perceptual measures (thermal sensation and perceived muscle pain).Main Outcome Measure(s): The rectal temperature (P = .98), heart rate (P = .85), thermal sensation (P = .69), and muscle pain (P = .31) were not different during exercise for the CS and CON trials (P &gt; .05). Overall, the cooling rate was faster during CS (0.07°C/min ± 0.03°C/min) than during CON (0.04°C/min ± 0.03°C/min; t16 = 2.77, P = .01). Heart-rate changes were greater during CS (45 ± 20 beats per minute) compared with CON (27 ± 10 beats per minute; t16 = 3.32, P = .004). Thermal sensation was reduced to a greater extent with CS than with CON (F3,45 = 41.12, P &lt; .001).Results: Although the CS facilitated cooling rates faster than no treatment, clinicians should continue to advocate for accepted cooling modalities and use CS only if no other validated means of cooling are available.Conclusions:


2015 ◽  
Vol 50 (8) ◽  
pp. 792-799 ◽  
Author(s):  
Kevin C. Miller ◽  
Erik E. Swartz ◽  
Blaine C. Long

Context Current treatment recommendations for American football players with exertional heatstroke are to remove clothing and equipment and immerse the body in cold water. It is unknown if wearing a full American football uniform during cold-water immersion (CWI) impairs rectal temperature (Trec) cooling or exacerbates hypothermic afterdrop. Objective To determine the time to cool Trec from 39.5°C to 38.0°C while participants wore a full American football uniform or control uniform during CWI and to determine the uniform's effect on Trec recovery postimmersion. Design Crossover study. Setting Laboratory. Patients or Other Participants A total of 18 hydrated, physically active, unacclimated men (age = 22 ± 3 years, height = 178.8 ± 6.8 cm, mass = 82.3 ± 12.6 kg, body fat = 13% ± 4%, body surface area = 2.0 ± 0.2 m2). Intervention(s) Participants wore the control uniform (undergarments, shorts, crew socks, tennis shoes) or full uniform (control plus T-shirt; tennis shoes; jersey; game pants; padding over knees, thighs, and tailbone; helmet; and shoulder pads). They exercised (temperature approximately 40°C, relative humidity approximately 35%) until Trec reached 39.5°C. They removed their T-shirts and shoes and were then immersed in water (approximately 10°C) while wearing each uniform configuration; time to cool Trec to 38.0°C (in minutes) was recorded. We measured Trec (°C) every 5 minutes for 30 minutes after immersion. Main Outcome Measure(s) Time to cool from 39.5°C to 38.0°C and Trec. Results The Trec cooled to 38.0°C in 6.19 ± 2.02 minutes in full uniform and 8.49 ± 4.78 minutes in control uniform (t17 = −2.1, P = .03; effect size = 0.48) corresponding to cooling rates of 0.28°C·min−1 ± 0.12°C·min−1 in full uniform and 0.23°C·min−1 ± 0.11°C·min−1 in control uniform (t17 = 1.6, P = .07, effect size = 0.44). The Trec postimmersion recovery did not differ between conditions over time (F1,17 = 0.6, P = .59). Conclusions We speculate that higher skin temperatures before CWI, less shivering, and greater conductive cooling explained the faster cooling in full uniform. Cooling rates were considered ideal when the full uniform was worn during CWI, and wearing the full uniform did not cause a greater postimmersion hypothermic afterdrop. Clinicians may immerse football athletes with hyperthermia wearing a full uniform without concern for negatively affecting body-core cooling.


1979 ◽  
Vol 57 (8) ◽  
pp. 860-865 ◽  
Author(s):  
G. R. Fox ◽  
J. S. Hayward ◽  
G. N. Hobson

The effects of alcohol on core cooling rates (rectal and tympanic), skin temperatures, and metabolic rate were determined for 10 subjects rendered hypothermic by immersion for 45 min in 10 °C water. Experiments were duplicated with and without a 20-min period of exercise at the beginning of cold water immersion. Measurements were continued during rewarming in a hot bath. With blood alcohol concentrations averaging 82 mg 100 mL−1, core cooling rates and changes in skin temperatures were insignificantly different from controls, even if the exercise period was imposed. Alcohol reduced shivering metabolic rate by an overall mean of 13%, insufficient to affect cooling rate. Alcohol had no effect on metabolic rate during exercise. During rewarming by hot bath, the amount of 'afterdrop' and rate of increase in core temperature were unaffected by alcohol. It was concluded that alcohol in a moderate dosage does not influence the rate of progress into hypothermia or subsequent, efficient rewarming. This emphasizes that the high incidence of alcohol involvement in water-related fatalities is due to alcohol potentiation of accidents rather than any direct effects on cold water survival, although very high doses of alcohol leading to unconsciousness would increase rate of progress into hypothermia.


2015 ◽  
Vol 47 ◽  
pp. 461-462
Author(s):  
Brian J. Friesen ◽  
Martin P. Poirier ◽  
Daniel Gagnon ◽  
Ryan McGinn ◽  
Glen P. Kenny

2016 ◽  
Vol 51 (6) ◽  
pp. 500-501 ◽  
Author(s):  
Emma A. Nye ◽  
Jessica R. Edler ◽  
Lindsey E. Eberman ◽  
Kenneth E. Games

Reference: Zhang Y, Davis JK, Casa DJ, Bishop PA. Optimizing cold water immersion for exercise-induced hyperthermia: a meta-analysis. Med Sci Sports Exerc. 2015;47(11):2464−2472. Clinical Questions: Do optimal procedures exist for implementing cold-water immersion (CWI) that yields high cooling rates for hyperthermic individuals? Data Sources: One reviewer performed a literature search using PubMed and Web of Science. Search phrases were cold water immersion, forearm immersion, ice bath, ice water immersion, immersion, AND cooling. Study Selection: Studies were included based on the following criteria: (1) English language, (2) full-length articles published in peer-reviewed journals, (3) healthy adults subjected to exercise-induced hyperthermia, and (4) reporting of core temperature as 1 outcome measure. A total of 19 studies were analyzed. Data Extraction: Pre-immersion core temperature, immersion water temperature, ambient temperature, immersion duration, and immersion level were coded a priori for extraction. Data originally reported in graphical form were digitally converted to numeric values. Mean differences comparing the cooling rates of CWI with passive recovery, standard deviation of change from baseline core temperature, and within-subjects r were extracted. Two independent reviewers used the Physiotherapy Evidence Database (PEDro) scale to assess the risk of bias. Main Results: Cold-water immersion increased the cooling rate by 0.03°C/min (95% confidence interval [CI] = 0.03, 0.04°C/min) compared with passive recovery. Cooling rates were more effective when the pre-immersion core temperature was ≥38.6°C (P = .023), immersion water temperature was ≤10°C (P = .036), ambient temperature was ≥20°C (P = .013), or immersion duration was ≤10 minutes (P &lt; .001). Cooling rates for torso and limb immersion (mean difference = 0.04°C/min, 95% CI = 0.03, 0.06°C/min) were higher (P = .028) than those for forearm and hand immersion (mean difference = 0.01°C/min, 95% CI = −0.01, 0.04°C/min). Conclusions: Hyperthermic individuals were cooled twice as fast by CWI as by passive recovery. Therefore, the former method is the preferred choice when treating patients with exertional heat stroke. Water temperature should be &lt;10°C, with the torso and limbs immersed. Insufficient published evidence supports CWI of the forearms and hands.


2017 ◽  
Vol 26 (3) ◽  
pp. 286-289
Author(s):  
Megan L. Keen ◽  
Kevin C. Miller

Clinical Scenario:Exercise performed in hot and humid environments increases core body temperature (TC). If TC exceeds 40.5°C for prolonged periods of time, exertional heat stroke (EHS) may occur. EHS is a leading cause of sudden death in athletes. Mortality and morbidity increase the longer the patient’s TC remains above 40.5°C; thus, it is imperative to initiate cooling as quickly as possible. Acceptable cooling rates in EHS situations are 0.08–0.15°C/min, while ideal cooling rates are above 0.16°C/min. Cooling vests are popular alternatives for cooling hyperthermic adults. Most vests cover the anterior and posterior torso and have varying numbers of pouches for phase-change materials (eg, gel packs); some vests only use circulating water to cool. While cooling vests offer several advantages (eg, portability), studies demonstrating their effectiveness at rapidly reducing TC in EHS scenarios are limited.Clinical Question:Are TC cooling rates acceptable (ie, >0.08°C/min) when hyperthermic humans are treated with cooling vests postexercise?Summary of Findings:No significant differences in TC cooling rates occurred between cooling vests and no cooling vests. Cooling rates across all studies were ≤0.053°C/min.Clinical Bottom Line:Cooling vests do not provide acceptable cooling rates of hyperthermic humans postexercise and should not be used to treat EHS. Instead, EHS patients should be treated with cold-water immersion within 30 min of collapse to avoid central nervous system dysfunction and organ failure.Strength of Recommendation:Strong evidence (eg, level 2 studies with PEDro scores ≥5) suggests that cooling vests do not reduce TC quickly and thus should not be used in EHS scenarios.


2020 ◽  
Vol 12 (1) ◽  
pp. 236-241
Author(s):  
Saman Khakpoor Roonkiani ◽  
Mohsen Ebrahimi ◽  
Ali Shamsi Majelan

Summary Study aim: To investigate the effect of cold water immersion (CWI) on muscle damage indexes after simulated soccer activity in young soccer players. Material and methods: Eighteen professional male soccer players were randomly divided into two groups: CWI (n = 10, age 19.3 ± 0.5, body mass index 22.2 ± 1.3) and control (n = 8, age 19.4 ± 0.8, body mass index 21.7 ± 1.5). Both groups performed a simulated 90-minute soccer-specific aerobic field test (SAFT90). Then, the CWI group subjects immersed themselves for 10 minutes in 8°C water, while the control group subjects sat passively for the same time period. Blood samples were taken before, immediately after, 10 minutes, 24 hours and 48 hours after the training session in a fasted state. Blood lactate, creatine kinase (CK) and lactate dehydrogenase (LDH) enzyme levels were measured. Results: Lactate, CK and LDH levels increased significantly after training (p < 0.001). There were significant interactions between groups and subsequent measurements for CK (p = 0.0012) and LDH (p = 0.0471). There was no significant difference in lactate level between the two groups at any aforementioned time. Conclusion: It seems that CWI after simulated 90-minute soccer training can reduce the values of muscle damage indexes in soccer players.


1988 ◽  
Vol 65 (2) ◽  
pp. 805-810 ◽  
Author(s):  
P. D. Neufer ◽  
A. J. Young ◽  
M. N. Sawka ◽  
S. R. Muza

To examine the influence of muscle glycogen on the thermal responses to passive rewarming subsequent to mild hypothermia, eight subjects completed two cold-water immersions (18 degrees C), followed by 75 min of passive rewarming (24 degrees C air, resting in blanket). The experiments followed several days of different exercise-diet regimens eliciting either low (LMG; 141.0 +/- 10.5 mmol.kg.dry wt-1) or normal (NMG; 526.2 +/- 44.2 mmol.kg.dry wt-1) prewarming muscle glycogen levels. Cold-water immersion was performed for 180 min or to a rectal temperature (Tre) of 35.5 degrees C. In four subjects (group A, body fat = 20 +/- 1%), postimmersion Tre was similar to preimmersion Tre for both trials (36.73 +/- 0.18 vs. 37.26 +/- 0.18 degrees C, respectively). Passive rewarming in group A resulted in an increase in Tre of only 0.13 +/- 0.08 degrees C. Conversely, initial rewarming Tre for the other four subjects (group B, body fat = 12 +/- 1%) averaged 35.50 +/- 0.05 degrees C for both trials. Rewarming increased Tre similarly in group B during both LMG (0.76 +/- 0.25 degrees C) and NMG (0.89 +/- 0.13 degrees C). Afterdrop responses, evident only in those individuals whose body core cooled during immersion (group B), were not different between LMG and NMG. These data support the contention that Tre responses during passive rewarming are related to body insulation. Furthermore these results indicate that low muscle glycogen levels do not impair rewarming time nor alter after-drop responses during passive rewarming after mild-to-moderate hypothermia.


Sign in / Sign up

Export Citation Format

Share Document