In-Season Dietary Adequacy of Trained Male Cross-Country Runners

1995 ◽  
Vol 5 (1) ◽  
pp. 45-55 ◽  
Author(s):  
Robert A. Niekamp ◽  
Janine T. Baer

The purpose of this study was to determine the dietary adequacy of 12 collegiate cross-country runners during a competitive season. Four-day diet records were collected twice during the season and analyzed for total daily energy, macronutrients, vitamin A, vitamin C, thiamin, riboflavin, niacin, vitamin , folate, iron, magnesium, zinc, and calcium. Mean energy intake (3,248 ± 590 kcal) was not significantly different from estimated mean energy expenditure (3,439 ± 244 kcal). Week 8 mean prealbumin levels were within normal limits (26.8 ± 2.8 mg/dl). Mean daily CHO intake was 497 ± 134 g/day (61.2%). Three to four hours prior to competition a pre-race meal was consumed; it contained 82 ± 47 g CHO. Posteompetition CHO intake was delayed an average 2.5 hr; at that time approximately 2.6 ± 0.69 g CHO/kg body weight was consumed. The athletes appeared to demonstrate dietary adequacy with the exception of timing of posteompetition carbohydrate consumption.

1964 ◽  
Vol 15 (6) ◽  
pp. 969 ◽  
Author(s):  
N McCGraham

The energy costs of standing, of rumination, of eating prepared meals, and of grazing were determined in laboratory experiments by indirect calorimetry. Sheep with body weights ranging from 30 to 110 kg were used. Energy expenditure due to standing amounted to 0.34 ± 0.02 kcal/hr/kg body weight. The energy cost of rumination was 0.24 ± 0.03 kcal/hr/kg. Rate of food intake varied from 60 g dry matter/hr with sheep grazing a poor sward to 800 g/hr with sheep eating hay, but in general this did not affect energy expenditure appreciably. The cost of eating prepared meals of either fresh herbage or hay was 0.54 ± 0.05 kcal/hr/kg body weight. It tended to be greatest when rate of food intake was greatest. Energy expenditure due to grazing was also 0.54 ± 0.05 kcal/hr/kg, irrespective of the type of sward and associated grazing behaviour. It is estimated that muscular work, mainly standing and eating, could account for nearly 40% of the daily energy expenditure of a sheep at maintenance, grazing a poor but level pasture, with drinking water available, and only 10% of that of a caged animal. Such a grazing animal could thus have requirements over 40% greater than those of a caged one. With sheep on hilly pasture or a long way from water, the cost of walking could become a major item.


2019 ◽  
Vol 51 (Supplement) ◽  
pp. 25
Author(s):  
Jesse A. Goodrich ◽  
Sewan Kim ◽  
Dillon J. Frisco ◽  
Kimberly Detwiler ◽  
Miguel Rueda ◽  
...  

1996 ◽  
Vol 149 (2) ◽  
pp. 319-325 ◽  
Author(s):  
M Cimmino ◽  
F Mion ◽  
F Goglia ◽  
Y Minaire ◽  
A Géloën

Abstract The objective of the present study was to test in vivo the metabolic effects of 3,5-di-iodothyronine (3,5-T2) in unanesthetized and unrestrained male Sprague–Dawley rats. Amino acid and lipid metabolisms were investigated by breath tests using as tracers the 13C-carboxyl-labeled molecules of leucine, α-ketoisocaproic acid (KIC) and octanoic acid, in four different groups of rats: hypothyroid animals (receiving propylthiouracil (PTU) and iopanoic acid), hypothyroid animals treated with either a daily i.p. injection of 3,5-T2 (25 μg/100 g body weight), or triiodothyronine (T3) (1 μg/100 g body weight), and control euthyroid animals receiving equivalent volumes of the vehicle solutions. Energy expenditure was measured by continuous monitoring of O2 consumption and CO2 production in these different groups. Daily energy expenditure was decreased by 30% in PTU-treated rats. The chronic treatments with 3,5-T2 and T3 restored daily energy expenditure to the control level. 13CO2 recovered in breath following the i.v. injection of octanoic acid-[1-13C] was decreased in hypothyroid animals compared with control animals (P<0·05) and restored to control values by T3 and 3,5-T2 treatments. The 13CO2 recovered in breath after i.v. injection of leucine-[1-13C]was increased in PTU-treated compared with control animals (P<0·05). Chronic treatment with either 3,5-T2 or T3 restored 13CO2 to control values. Excretion of 13CO2 recovered in breath following the i.v. injection of KIC-[1-13C] was increased in PTU-treated compared with control animals. Chronic treatments with either 3,5-T2 or T3 did not restore KIC decarboxylation. These results suggest that 3,5-T2 exerts metabolic effects on energy expendi ture, on both lipid β-oxidation and leucine metabolism in hypothyroid rats. We conclude that 3,5-T2 is a metabolically active iodothyronine. Journal of Endocrinology (1996) 149, 319–325


2014 ◽  
Vol 46 ◽  
pp. 951
Author(s):  
Katy Neves ◽  
A Wayne Johnson ◽  
Joseph William Myrer ◽  
Coulter Neves ◽  
Jarom Bridges ◽  
...  

Nutrients ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2533 ◽  
Author(s):  
Christopher L. Melby ◽  
Hunter L. Paris ◽  
R. Drew Sayer ◽  
Christopher Bell ◽  
James O. Hill

Long-term maintenance of weight loss requires sustained energy balance at the reduced body weight. This could be attained by coupling low total daily energy intake (TDEI) with low total daily energy expenditure (TDEE; low energy flux), or by pairing high TDEI with high TDEE (high energy flux). Within an environment characterized by high energy dense food and a lack of need for movement, it may be particularly difficult for weight-reduced individuals to maintain energy balance in a low flux state. Most of these individuals will increase body mass due to an inability to sustain the necessary level of food restriction. This increase in TDEI may lead to the re-establishment of high energy flux at or near the original body weight. We propose that following weight loss, increasing physical activity can effectively re-establish a state of high energy flux without significant weight regain. Although the effect of extremely high levels of physical activity on TDEE may be constrained by compensatory reductions in non-activity energy expenditure, moderate increases following weight loss may elevate energy flux and encourage physiological adaptations favorable to weight loss maintenance, including better appetite regulation. It may be time to recognize that few individuals are able to re-establish energy balance at a lower body weight without permanent increases in physical activity. Accordingly, there is an urgent need for more research to better understand the role of energy flux in long-term weight maintenance.


Sign in / Sign up

Export Citation Format

Share Document