Use Of Estimated Perceived Exertion Ratings To Produce Resistance Exercise Intensity

2005 ◽  
Vol 37 (Supplement) ◽  
pp. S319-S320
Author(s):  
Kristen Lagally ◽  
Anthony J. Amorose
2022 ◽  
Vol 8 (1) ◽  
Author(s):  
John W. D. Lea ◽  
Jamie M. O’Driscoll ◽  
Sabina Hulbert ◽  
James Scales ◽  
Jonathan D. Wiles

Abstract Background The validity of ratings of perceived exertion (RPE) during aerobic training is well established; however, its validity during resistance exercise is less clear. This meta-analysis used the known relationships between RPE and exercise intensity (EI), heart rate (HR), blood lactate (BLa), blood pressure (BP) and electromyography (EMG) to determine the convergent validity of RPE as a measure of resistance exercise intensity and physiological exertion, during different forms of resistance exercise. Additionally, this study aims to assess the effect of several moderator variables on the strength of the validity coefficients, so that clearer guidance can be given on the use of RPE during resistance exercise. Methods An online search of 4 databases and websites (PubMed, Web of Science SPORTDiscus and ResearchGate) was conducted up to 28 February 2020. Additionally, the reference lists of the included articles were inspected manually for further unidentified studies. The inclusion criteria were healthy participants of any age, a rating scale used to measure RPE, resistance exercise of any type, one cohort receiving no other intervention, and must present data from one of the following outcome measures: EI, HR, BP, EMG or BLa. Weighted mean effect sizes (r) were calculated using a random-effects model. Heterogeneity was assessed using the τ2 and I2 statistics. Moderator analysis was conducted using random-effects meta-regression. Results One-hundred and eighteen studies were included in the qualitative synthesis, with 75 studies (99 unique cohorts) included in the meta-analysis. The overall weighted mean validity coefficient was large (0.88; 95% CI 0.84–0.91) and between studies heterogeneity was very large (τ2 = 0.526, I2 = 96.1%). Studies using greater workload ranges, isometric muscle actions, and those that manipulated workload or repetition time, showed the highest validity coefficients. Conversely, sex, age, training status, RPE scale used, and outcome measure no significant effect. Conclusions RPE provides a valid measure of exercise intensity and physiological exertion during resistance exercise, with effect sizes comparable to or greater than those shown during aerobic exercise. Therefore, RPE may provide an easily accessible means of prescribing and monitoring resistance exercise training. Trial Registration The systematic review protocol was registered on the PROSPERO database (CRD42018102640).


2012 ◽  
Vol 26 (2) ◽  
pp. 466-472 ◽  
Author(s):  
Ozéas de L. Lins-Filho ◽  
Robert J Robertson ◽  
Breno Q Farah ◽  
Sérgio L.C Rodrigues ◽  
Edilson S Cyrino ◽  
...  

Author(s):  
Kevin L Lamb ◽  
Gaynor Parfitt ◽  
Roger G Eston

As the Borg rating of perceived exertion scale was not appropriate for children, investigators set about developing child-specific scales which employed numbers, words and/or images that were more familiar and understandable. Numerous studies have examined the validity and reliability of such scales as the CERT, PCERT and OMNI amongst children aged 5 to 16 years, across different modes of exercise (cycling, running, stepping, resistance exercise), protocols (intermittent vs. continuous, incremental vs. non-incremental) and paradigms (estimation vs. production). Such laboratory-based research has enabled the general conclusion that children can, especially with practise, use effort perception scales to differentiate between exercise intensity levels, and to self-regulate their exercise output to match various levels indicated by them. However, inconsistencies in the methodological approaches adopted diminish the certainty of some of the interpretations made by researchers. The scope for research in the application of effort perception in physical education and activity/health promotion is considerable.


2009 ◽  
Vol 31 (5) ◽  
pp. 640-656 ◽  
Author(s):  
Yu-Kai Chang ◽  
Jennifer L. Etnier

The purpose of this study was to explore the dose-response relationship between resistance exercise intensity and cognitive performance. Sixty-eight participants were randomly assigned into control, 40%, 70%, or 100% of 10-repetition maximal resistance exercise groups. Participants were tested on Day 1 (baseline) and on Day 2 (measures were taken relative to performance of the treatment). Heart rate, ratings of perceived exertion, self-reported arousal, and affect were assessed on both days. Cognitive performance was assessed on Day 1 and before and following treatment on Day 2. Results from regression analyses indicated that there is a significant linear effect of exercise intensity on information processing speed, and a significant quadratic trend for exercise intensity on executive function. Thus, there is a dose-response relationship between the intensity of resistance exercise and cognitive performance such that high-intensity exercise benefits speed of processing, but moderate intensity exercise is most beneficial for executive function.


2018 ◽  
Vol 43 (4) ◽  
pp. 397-402 ◽  
Author(s):  
Corinne N. Boyd ◽  
Stephanie M. Lannan ◽  
Micah N. Zuhl ◽  
Ricardo Mora-Rodriguez ◽  
Rachael K. Nelson

While hot yoga has gained enormous popularity in recent years, owing in part to increased environmental challenge associated with exercise in the heat, it is not clear whether hot yoga is more vigorous than thermo-neutral yoga. Therefore, the aim of this study was to determine objective and subjective measures of exercise intensity during constant intensity yoga in a hot and thermo-neutral environment. Using a randomized, crossover design, 14 participants completed 2 identical ∼20-min yoga sessions in a hot (35.3 ± 0.8 °C; humidity: 20.5% ± 1.4%) and thermo-neutral (22.1 ± 0.2 °C; humidity: 27.8% ± 1.6%) environment. Oxygen consumption and heart rate (HR) were recorded as objective measures (percentage of maximal oxygen consumption and percentage of maximal HR (%HRmax)) and rating of perceived exertion (RPE) was recorded as a subjective measure of exercise intensity. There was no difference in exercise intensity based on percentage of maximal oxygen consumption during hot versus thermo-neutral yoga (30.9% ± 2.3% vs. 30.5% ± 1.8%, p = 0.68). However, exercise intensity was significantly higher during hot versus thermo-neutral yoga based on %HRmax (67.0% ± 2.3% vs. 60.8% ± 1.9%, p = 0.01) and RPE (12 ± 1 vs. 11 ± 1, p = 0.04). According to established exercise intensities, hot yoga was classified as light-intensity exercise based on percentage of maximal oxygen consumption but moderate-intensity exercise based on %HRmax and RPE while thermo-neutral yoga was classified as light-intensity exercise based on percentage of maximal oxygen uptake, %HRmax, and RPE. Despite the added hemodynamic stress and perception that yoga is more strenuous in a hot environment, we observed similar oxygen consumption during hot versus thermo-neutral yoga, classifying both exercise modalities as light-intensity exercise.


Sign in / Sign up

Export Citation Format

Share Document