scholarly journals OXIDATIVE METABOLISM DURING THE TIME-COURSE OF DISUSE ATROPHY IN MALE AND FEMALE MICE

2020 ◽  
Vol 52 (7S) ◽  
pp. 19-19
Author(s):  
Madeline G. Amos ◽  
Megan E. Rosa-Caldwell ◽  
Wesley S. Haynie ◽  
Kirsten R. Dunlap ◽  
Seongkyun Lim ◽  
...  
2017 ◽  
Vol 6 (1) ◽  
pp. 20-26 ◽  
Author(s):  
Robert A Hart ◽  
Robin C Dobos ◽  
Linda L Agnew ◽  
Neil A Smart ◽  
James R McFarlane

Pharmacokinetics of leptin in mammals has not been studied in detail and only one study has examined more than one time point in non-mutant mice and this was in a female mice. This is the first study to describe leptin distribution over a detailed time course in normal male mice. A physiologic dose (12 ng) of radiolabelled leptin was injected into adult male mice via the lateral tail vein and tissues were dissected out and measured for radioactivity over a time course of up to two hours. Major targets were the digestive tract, kidneys, skin and lungs. The brain was not a major target, and 0.15% of the total dose was recovered from the brain 5 min after administration. Major differences appear to exist in the distribution of leptin between the male and female mice, indicating a high degree of sexual dimorphism. Although the half-lives were similar between male and female mice, almost twice the proportion of leptin was recovered from the digestive tract of male mice in comparison to that reported previously for females. This would seem to indicate a major difference in leptin distribution and possibly function between males and females.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Alexander T. Sougiannis ◽  
Reilly T. Enos ◽  
Brandon N. VanderVeen ◽  
Kandy T. Velazquez ◽  
Brittany Kelly ◽  
...  

Abstract Background Emodin, a natural anthraquinone, has shown potential as an effective therapeutic agent in the treatment of many diseases including cancer. However, its clinical development is hindered by uncertainties surrounding its potential toxicity. The primary purpose of this study was to uncover any potential toxic properties of emodin in mice at doses that have been shown to have efficacy in our cancer studies. In addition, we sought to assess the time course of emodin clearance when administered both intraperitoneally (I.P.) and orally (P.O.) in order to begin to establish effective dosing intervals. Methods We performed a subchronic (12 week) toxicity study using 3 different doses of emodin (~ 20 mg/kg, 40 mg/kg, and 80 mg/kg) infused into the AIN-76A diet of male and female C57BL/6 mice (n = 5/group/sex). Body weight and composition were assessed following the 12-week feeding regime. Tissues were harvested and assessed for gross pathological changes and blood was collected for a complete blood count and evaluation of alanine transaminase (ALT), aspartate transaminase (AST) and creatinine. For the pharmacokinetic study, emodin was delivered intraperitoneally I.P. or P.O. at 20 mg/kg or 40 mg/kg doses to male and female mice (n = 4/group/sex/time-point) and circulating levels of emodin were determined at 1, 4 and 12 h following administration via liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis. Results We found that 12 weeks of low (20 mg/kg), medium (40 mg/kg), or high (80 mg/kg) emodin feeding did not cause pathophysiological perturbations in major organs. We also found that glucuronidated emodin peaks at 1 h for both I.P. and P.O. administered emodin and is eliminated by 12 h. Interestingly, female mice appear to metabolize emodin at a faster rate than male mice as evidenced by greater levels of glucuronidated emodin at the 1 h time-point (40 mg/kg for both I.P. and P.O. and 20 mg/kg I.P.) and the 4-h time-point (20 mg/kg I.P.). Conclusions In summary, our studies establish that 1) emodin is safe for use in both male and female mice when given at 20, 40, and 80 mg/kg doses for 12 weeks and 2) sex differences should be considered when establishing dosing intervals for emodin treatment.


Author(s):  
Megan E. Rosa‐Caldwell ◽  
Seongkyun Lim ◽  
Wesley S. Haynie ◽  
Jacob L. Brown ◽  
David E. Lee ◽  
...  

2019 ◽  
Vol 476 (22) ◽  
pp. 3521-3532
Author(s):  
Eric Soubeyrand ◽  
Megan Kelly ◽  
Shea A. Keene ◽  
Ann C. Bernert ◽  
Scott Latimer ◽  
...  

Plants have evolved the ability to derive the benzenoid moiety of the respiratory cofactor and antioxidant, ubiquinone (coenzyme Q), either from the β-oxidative metabolism of p-coumarate or from the peroxidative cleavage of kaempferol. Here, isotopic feeding assays, gene co-expression analysis and reverse genetics identified Arabidopsis 4-COUMARATE-COA LIGASE 8 (4-CL8; At5g38120) as a contributor to the β-oxidation of p-coumarate for ubiquinone biosynthesis. The enzyme is part of the same clade (V) of acyl-activating enzymes than At4g19010, a p-coumarate CoA ligase known to play a central role in the conversion of p-coumarate into 4-hydroxybenzoate. A 4-cl8 T-DNA knockout displayed a 20% decrease in ubiquinone content compared with wild-type plants, while 4-CL8 overexpression boosted ubiquinone content up to 150% of the control level. Similarly, the isotopic enrichment of ubiquinone's ring was decreased by 28% in the 4-cl8 knockout as compared with wild-type controls when Phe-[Ring-13C6] was fed to the plants. This metabolic blockage could be bypassed via the exogenous supply of 4-hydroxybenzoate, the product of p-coumarate β-oxidation. Arabidopsis 4-CL8 displays a canonical peroxisomal targeting sequence type 1, and confocal microscopy experiments using fused fluorescent reporters demonstrated that this enzyme is imported into peroxisomes. Time course feeding assays using Phe-[Ring-13C6] in a series of Arabidopsis single and double knockouts blocked in the β-oxidative metabolism of p-coumarate (4-cl8; at4g19010; at4g19010 × 4-cl8), flavonol biosynthesis (flavanone-3-hydroxylase), or both (at4g19010 × flavanone-3-hydroxylase) indicated that continuous high light treatments (500 µE m−2 s−1; 24 h) markedly stimulated the de novo biosynthesis of ubiquinone independently of kaempferol catabolism.


Planta Medica ◽  
2015 ◽  
Vol 81 (16) ◽  
Author(s):  
ES Cho ◽  
YJ Lee ◽  
JS Park ◽  
J Kim ◽  
NS Kim ◽  
...  

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1999-P ◽  
Author(s):  
HYE LIM NOH ◽  
SUJIN SUK ◽  
RANDALL H. FRIEDLINE ◽  
KUNIKAZU INASHIMA ◽  
DUY A. TRAN ◽  
...  

Analgesia ◽  
1999 ◽  
Vol 4 (3) ◽  
pp. 397-404 ◽  
Author(s):  
Corinne A. Patrick ◽  
M. C. Holden Ko ◽  
James H. Woods

2020 ◽  
Vol 80 (6) ◽  
pp. 538-546
Author(s):  
Nancy Paniagua ◽  
Rocío Girón ◽  
Carlos Goicoechea ◽  
Mª Isabel Martín‐Fontelles ◽  
Ana Bagues

Sign in / Sign up

Export Citation Format

Share Document