scholarly journals Effects Of The Covid-19 Pandemic On The Exercise Training Of Masters Athletes

2021 ◽  
Vol 53 (8S) ◽  
pp. 212-212
Author(s):  
Owen Sloop ◽  
Lisa Ferguson-Stegall
Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1409
Author(s):  
Barbara Strasser ◽  
Dominik Pesta ◽  
Jörn Rittweger ◽  
Johannes Burtscher ◽  
Martin Burtscher

Regular physical exercise and a healthy diet are major determinants of a healthy lifespan. Although aging is associated with declining endurance performance and muscle function, these components can favorably be modified by regular physical activity and especially by exercise training at all ages in both sexes. In addition, age-related changes in body composition and metabolism, which affect even highly trained masters athletes, can in part be compensated for by higher exercise metabolic efficiency in active individuals. Accordingly, masters athletes are often considered as a role model for healthy aging and their physical capacities are an impressive example of what is possible in aging individuals. In the present review, we first discuss physiological changes, performance and trainability of older athletes with a focus on sex differences. Second, we describe the most important hormonal alterations occurring during aging pertaining regulation of appetite, glucose homeostasis and energy expenditure and the modulatory role of exercise training. The third part highlights nutritional aspects that may support health and physical performance for older athletes. Key nutrition-related concerns include the need for adequate energy and protein intake for preventing low bone and muscle mass and a higher demand for specific nutrients (e.g., vitamin D and probiotics) that may reduce the infection burden in masters athletes. Fourth, we present important research findings on the association between exercise, nutrition and the microbiota, which represents a rapidly developing field in sports nutrition.


2013 ◽  
Vol 33 (8) ◽  
pp. 1190-1196 ◽  
Author(s):  
Yong-Sheng Zhu ◽  
Takashi Tarumi ◽  
Benjamin Y Tseng ◽  
Dean M Palmer ◽  
Benjamin D Levine ◽  
...  

Physical activity may influence cerebrovascular function. The objective of this study was to determine the impact of life-long aerobic exercise training on cerebral vasomotor reactivity (CVMR) to changes in end-tidal CO2 (EtCO2) in older adults. Eleven sedentary young (SY, 27 ± 5 years), 10 sedentary elderly (SE, 72 ± 4 years), and 11 Masters athletes (MA, 72 ± 6 years) underwent the measurements of cerebral blood flow velocity (CBFV), arterial blood pressure, and EtCO2 during hypocapnic hyperventilation and hypercapnic rebreathing. Baseline CBFV was lower in SE and MA than in SY while no difference was observed between SE and MA. During hypocapnia, CVMR was lower in SE and MA compared with SY (1.87 ± 0.42 and 1.47 ± 0.21 vs. 2.18 ± 0.28 CBFV%/mm Hg, P < 0.05) while being lowest in MA among all groups ( P < 0.05). In response to hypercapnia, SE and MA exhibited greater CVMR than SY (6.00 ± 0.94 and 6.67 ± 1.09 vs. 3.70 ± 1.08 CBFV1%/mm Hg, P < 0.05) while no difference was observed between SE and MA. A negative linear correlation between hypo- and hypercapnic CVMR ( R2 = 0.37, P < 0.001) was observed across all groups. Advanced age was associated with lower resting CBFV and lower hypocapnic but greater hypercapnic CVMR. However, life-long aerobic exercise training appears to have minimal effects on these age-related differences in cerebral hemodynamics.


2013 ◽  
Vol 114 (2) ◽  
pp. 195-202 ◽  
Author(s):  
Vincent L. Aengevaeren ◽  
Jurgen A. H. R. Claassen ◽  
Benjamin D. Levine ◽  
Rong Zhang

Cerebral blood flow (CBF) is stably maintained through the combined effects of blood pressure (BP) regulation and cerebral autoregulation. Previous studies suggest that aerobic exercise training improves cardiac baroreflex function and beneficially affects BP regulation, but may negatively affect cerebral autoregulation. The purpose of this study was to reveal the impact of lifelong exercise on cardiac baroreflex function and dynamic cerebral autoregulation (CA) in older adults. Eleven Masters athletes (MA) (8 men, 3 women; mean age 73 ± 6 yr; aerobic training >15 yr) and 12 healthy sedentary elderly (SE) (7 men, 5 women; mean age 71 ± 6 yr) participated in this study. BP, CBF velocity (CBFV), and heart rate were measured during resting conditions and repeated sit-stand maneuvers to enhance BP variability. Baroreflex gain was assessed using transfer function analysis of spontaneous changes in systolic BP and R-R interval in the low frequency range (0.05–0.15 Hz). Dynamic CA was assessed during sit-stand–induced changes in mean BP and CBFV at 0.05 Hz (10 s sit, 10 s stand). Cardiac baroreflex gain was more than doubled in MA compared with SE (MA, 7.69 ± 7.95; SE, 3.18 ± 1.29 ms/mmHg; P = 0.018). However, dynamic CA was similar in the two groups (normalized gain: MA, 1.50 ± 0.56; SE, 1.56 ± 0.42% CBFV/mmHg; P = 0.792). These findings suggest that lifelong exercise improves cardiac baroreflex function, but does not alter dynamic CA. Thus, beneficial effects of exercise training on BP regulation can be achieved in older adults without compromising dynamic regulation of CBF.


2012 ◽  
Vol 302 (6) ◽  
pp. H1340-H1346 ◽  
Author(s):  
Shigeki Shibata ◽  
Benjamin D. Levine

Arteriosclerosis with aging leads to central arterial stiffening in humans, which could be a prime cause for increased cardiac afterload in the elderly. The purpose of the present study was to assess the effects of 1 yr of progressive exercise training on central aortic compliance and left ventricular afterload in sedentary healthy elderly volunteers. Ten healthy sedentary seniors and 11 Masters athletes (>65 yr) were recruited. The sedentary seniors underwent 1 yr of progressive exercise training so that at the end of the year, they were exercising ∼200 min/wk. Central aortic compliance was assessed by the Modelflow aortic age, which reflects the intrinsic structural components of aortic compliance. Cardiac afterload was assessed by effective arterial elastance (Ea) with its contributors of peripheral vascular resistance (PVR) and systemic arterial compliance (SAC). After exercise training, Ea, PVR, and SAC were improved in sedentary seniors and became comparable with those of Masters athletes although the Modelflow aortic age was not changed. Moreover, after exercise training, when stroke volume was restored with lower body negative pressure back to pretraining levels, the exercise training-induced improvements in Ea, PVR, and SAC were eliminated. Aortic stiffening with aging was not improved even after 1 yr of progressive endurance exercise training in the previously sedentary elderly, while left ventricular afterload was reduced. This reduced afterload after exercise training appeared to be attributable to cardiovascular functional modulation to an increase in stroke volume rather than to intrinsic structural changes in the arterial wall.


Sign in / Sign up

Export Citation Format

Share Document