The Effect of Large Particle Addition on Heat Transfer from Side Wall in Turbulent Agitation Vessel

2021 ◽  
Vol 47 (4) ◽  
pp. 91-95
Author(s):  
Masatoshi Marui ◽  
Hideki Tokanai
Author(s):  
Hai-yong Liu ◽  
Cun-liang Liu ◽  
Lin Ye

To evaluate the application of the impingement cooling in a trapezoidal duct, particularly the influence on internal cooling of the cross flow and swirl flow. Experimental and numerical studies have been performed. The experiment focuses on the heat transfer characteristics in the duct, when the numerical simulation focuses on the flow characteristics. Four Reynolds numbers (10000, 20000, 30000 and 40000), six cross flow mass flow ratios (0, 0.1, 0.2, 0.3, 0.4 and 0.5) and two impingement angle (35° and 45°) are considered in both the experiment and the numerical simulation. The temperature on the target wall and the exit side wall is measured by the thermocouples, when the realizable k-ε turbulence model and enhanced wall treatment are performed using a commercial code Fluent. The results show that only part of the jets contribute in the heat transfer enhancement on the target wall, the other jets improve a large anticlockwise vortex occupied the upper part of the duct and drive strong swirl flow. The heat transfer on the exit side wall is enhanced by the swirl flow. The cross flow is induced in the duct by the outflow of the end exit hole. It deflects the jets and abates the impingement cooling on the target wall in the downstream region but has no evidently effect on the heat transfer on the exit side wall. Higher impingement angle helps to augment the impingement cooling on the target wall and improves the resistance ability of the jets against the effect of the cross flow. The heat transfer enhancement ability on the target wall and exit side wall in the present duct is compared to that of a smooth duct. The Nusselt number of the former is about 3 times higher than that of the latter. It indicates that the impingement and swirl play equally important roles in the heat transfer enhancement in the present duct. Empirical dimensionless correlations based on the present experiment data are presented in the paper.


Author(s):  
Jiangnan Zhu ◽  
Tieyu Gao ◽  
Jun Li ◽  
Guojun Li ◽  
Jianying Gong

The secondary flow which is generated by the angled rib is one of the key factors of heat transfer enhancement in gas turbine blade cooling channels. However, the current studies are all based on the velocity vector and streamline, which limit the research on the detailed micro-structure of secondary flow. In order to make further targeted optimization on the flow and heat transfer in the cooling channels of gas turbine blade, it is necessary to firstly investigate the generation, interaction, dissipation and the influence on heat transfer of secondary flow with the help of new topological method. This paper reports the numerical study of the secondary flow and the effect of secondary flow on heat transfer enhancement in rectangular two-pass channel with 45° ribs. Based on the vortex core technology, the structure of secondary flow can be clearly shown and studied. The results showed that the main flow secondary flow is thrown to the outer side wall after the corner due to the centrifugal force. Then it is weakened in the second pass and a new main flow secondary flow is generated at the same time near the opposite side wall in the second pass. The Nusselt number distribution has also been compared with the secondary flow vortex core distribution. The results shows that the heat transfer strength is weakened in the second pass due to the interaction between the old main flow secondary flow and the new one. These two secondary flows are in opposite rotation direction, which reduces the disturbance and mass transfer strength in the channel.


Author(s):  
Hossein Mohammad Ghasemi ◽  
Neda Gilani ◽  
Jafar Towfighi Daryan

A new arrangement of side-wall burners of an industrial furnace was studied by three-dimensional computational fluid dynamics (CFD) simulation. This simulation was conducted on ten calculation domain. Finite rate/eddy dissipation model was used as a combustion model. Discrete ordinate model (DOM) was considered as radiation model. Furthermore, weighted sum of gray gas model (WSGGM) was used to calculate radiative gas properties. Tube skin temperature and heat flux profiles were obtained by solving mass, momentum, and energy equations. Moreover, fuel rate variation was considered as an effective parameter. A base flow rate of fuel (m˙=0.0695kg/s) was assigned and different ratios (0.25 m˙, 0.5 m˙, 2 m˙, and 4 m˙) were assigned to investigate the heat distribution over the furnace. Resulted temperature and heat profiles were obtained in nonuniform mode using the proposed wall burner arrangement. According to the results, despite increased heat transfer coefficient of about 34% for m˙–4 m˙, temperature profile for this rate is too high and is harmful for tube metallurgy. Also, the proper range for fuel rate variation was determined as 0.5–2 m˙. In this range, heat transfer coefficient and Nusselt number for m˙–2 m˙ were increased by 21% and for m˙–0.25 m˙ were decreased by about 28%.


1994 ◽  
Vol 116 (3) ◽  
pp. 542-547 ◽  
Author(s):  
D. Bohn ◽  
G. H. Dibelius ◽  
E. Deuker ◽  
R. Emunds

The prediction of the temperature distribution in a gas turbine rotor containing gasfilled closed cavities, for example between two disks, has to account for the heat transfer conditions encountered inside these cavities. In an entirely closed annulus no forced convection is present, but a strong natural convection flow occurs induced by a nonuniform density distribution in the centrifugal force field. A computer code has been developed and applied to a rotating annulus with square cross section as a base case. The co-axial heat flux from one side wall to the other was modeled assuming constant temperature distribution at each wall but at different temperature levels. Additionally the inner and outer walls were assumed to be adiabatic. The code was first verified for the annulus approaching the plane square cavity in the gravitational field, i.e., the ratio of the radius r over the distance h between outer and inner cylindrical wall was set very large. The results obtained agree with De Vahl Davis’ benchmark solution. By reducing the inner radius to zero, the results could be compared with Chew’s computation of a closed rotating cylinder, and again good agreement was found. Parametric studies were carried out varying the Grashof number Gr, the rotational Reynolds number Re, and the r/h ratio, i.e., the curvature of the annulus. A decrease of this ratio at constant Gr and Re number results in a decrease of heat transfer due to the Coriolis forces attenuating the relative gas velocity. The same effect can be obtained by increasing the Re number with the h/r ratio and the Gr number being constant. By inserting radial walls into the cavity the influence of the Coriolis forces is reduced, resulting in an increase of heat transfer.


Author(s):  
Kyoji Inaoka ◽  
Kouji Kawakami ◽  
Yoshi Nishii ◽  
Mamoru Senda

Flow modification downstream of a backward-facing step has been tried in order to achieve heat transfer enhancement by introducing two kinds of devices, a triangle prism rib and electromagnetic actuators, on the step edge. The triangle rib attached to the side-wall corner makes the downward flow inclined and generates a circulation-like fluid motion behind it. Because both flows work effective in reducing the flow re-circulation caused behind the step, large heat transfer recovery is obtained near the side-wall. This advantage of the triangle rib remains effective when the flap actuations are imposed. Thus, the large-scale unsteady vortex intensively reduces the flow recirculation, the triangle rib with flap actuations attains the largest heat transfer recovery behind the step.


1984 ◽  
Vol 106 (1) ◽  
pp. 85-90 ◽  
Author(s):  
R. L. Adams

The potential use of fluidized bed combustion of coal as a means of meeting air quality standards with high-sulfur fuels has motivated the development of theoretical models of heat transfer in large particle gas fluidized beds. Models of the separate contributions of emulsion and bubble phase heat transfer have been developed by Adams and Welty [1] and Adams [2, 3, 4] and have been substantiated by experimental data for a horizontal tube immersed in a two-dimensional cold bed obtained by Catipovic [5, 6]. The consolidation of these models to predict local and overall time-average heat transfer to immersed surfaces requires information regarding emulsion phase residence time and bubble phase contact fraction for the particular geometry of interest. The analytical procedure to consolidate these models is outlined in the present work, then applied to the case of a horizontal tube immersed in a two-dimensional atmospheric pressure cold bed. Measurements of emulsion phase residence time and bubble phase contact fraction obtained by Catipovic [5] are used in the calculations for particle diameters ranging from 1.3 to 6 mm. The results agree favorably with experimental data and further substantiate the fundamental assumptions of the model.


2020 ◽  
Vol 142 (3) ◽  
Author(s):  
Saeid R. Angeneh ◽  
Murat K. Aktas

Abstract The influence of hydrodynamically developing nonzero mean acoustic streaming motion on transient convective heat transfer in an air-filled rectangular enclosure is studied numerically. The enclosure is two-dimensional with sinusoidal bottom wall spatial temperature distribution. The oscillatory flow under relatively large Womersley number regime conditions is actuated by the periodic vibrations of the enclosure side wall. The side walls of the enclosure are adiabatic, while the top wall is isothermal. The compressible form of the Navier–Stokes equations is considered to predict the oscillatory- and time-averaged mean flow fields. A control-volume method based explicit computational scheme is used to simulate the convective transport in the enclosure. The longitudinal and the transverse temperature gradients strongly affect the flow structure in the enclosure. The mean fluid motion alters the heat transfer behavior compared to the pure conduction.


Sign in / Sign up

Export Citation Format

Share Document