scholarly journals Globo-series glycosphingolipids deficiency in mice resulted in the attenuation of bone formation through decrease of osteoblasts

Author(s):  
Kazunori Hamamura ◽  
Kosuke Hamajima ◽  
Yoshitaka Mishima ◽  
Koichi Furukawa ◽  
Ken Miyazawa ◽  
...  
Keyword(s):  
2019 ◽  
Vol 20 (18) ◽  
pp. 4619 ◽  
Author(s):  
Kazunori Hamamura ◽  
Kosuke Hamajima ◽  
Shoyoku Yo ◽  
Yoshitaka Mishima ◽  
Koichi Furukawa ◽  
...  

Glycosphingolipids are known to play a role in developing and maintaining the integrity of various organs and tissues. Among glycosphingolipids, there are several reports on the involvement of gangliosides in bone metabolism. However, there have been no reports on the presence or absence of expression of globo-series glycosphingolipids in osteoblasts and osteoclasts, and the involvement of their glycosphingolipids in bone metabolism. In the present study, we investigated the presence or absence of globo-series glycosphingolipids such as Gb3 (globotriaosylceramide), Gb4 (globoside), and Gb5 (galactosyl globoside) in osteoblasts and osteoclasts, and the effects of genetic deletion of Gb3 synthase, which initiates the synthesis of globo-series glycosphingolipids on bone metabolism. Among Gb3, Gb4, and Gb5, only Gb4 was expressed in osteoblasts. However, these glycosphingolipids were not expressed in pre-osteoclasts and osteoclasts. Three-dimensional micro-computed tomography (3D-μCT) analysis revealed that femoral cancellous bone mass in Gb3 synthase-knockout (Gb3S KO) mice was lower than that in wild type (WT) mice. Calcein double labeling also revealed that bone formation in Gb3S KO mice was significantly lower than that in WT mice. Consistent with these results, the deficiency of Gb3 synthase in mice decreased the number of osteoblasts on the bone surface, and suppressed mRNA levels of osteogenic differentiation markers. On the other hand, osteoclast numbers on the bone surface and mRNA levels of osteoclast differentiation markers in Gb3S KO mice did not differ from WT mice. This study demonstrated that deletion of Gb3 synthase in mice decreases bone mass via attenuation of bone formation.


2006 ◽  
Vol 76 (3) ◽  
pp. 111-116 ◽  
Author(s):  
Hiroshi Matsuzaki ◽  
Misao Miwa

The purpose of this study was to clarify the effects of dietary calcium (Ca) supplementation on bone metabolism of magnesium (Mg)-deficient rats. Male Wistar rats were randomized by weight into three groups, and fed a control diet (control group), a Mg-deficient diet (Mg- group) or a Mg-deficient diet having twice the control Ca concentrations (Mg-2Ca group) for 14 days. Trabecular bone volume was significantly lower in the Mg - and Mg-2Ca groups than in the control group. Trabecular number was also significantly lower in the Mg - and Mg-2Ca groups than in the control group. Mineralizing bone surface, mineral apposition rate (MAR), and surface referent bone formation rate (BFR/BS) were significantly lower in the Mg - and Mg-2Ca groups than in the control group. Furthermore, MAR and BFR/BS were significantly lower in the Mg-2Ca group than in the Mg - group. These results suggest that dietary Ca supplementation suppresses bone formation in Mg-deficient rats.


1999 ◽  
Vol 28 (6) ◽  
pp. 375-377 ◽  
Author(s):  
K Lee ◽  
Y Suei ◽  
T Yamada ◽  
S Masuda ◽  
I Ogawa ◽  
...  

1998 ◽  
Vol 37 (02) ◽  
pp. 76-79 ◽  
Author(s):  
T. D. Kirchhoff ◽  
W. Burchert ◽  
J. v. d. Hoff ◽  
H. Zeidler ◽  
H. Hundeshagen ◽  
...  

SummaryA 61-year-old female patient presenting with mixed connective tissue disease (Sharp syndrome), underwent a long-term high dose glucocorticoid treatment because of multiple organ manifestations. Under steroid therapy she developed severe osteoporosis resulting in multiple fractures. A dynamic [18F]fluoride PET study in this patient revealed reduced fluoride influx in non-fractured vertebrae. This finding corresponds to pathogenetic concepts which propose an inhibition of bone formation as major cause of glucocorticoid-induced osteoporosis. In the light of the presented case it seems to be promising to evaluate the diagnostic benefit of [18F]fluoride PET in osteoporosis.


2020 ◽  
Author(s):  
Gretl Hendrickx ◽  
Verena Fischer ◽  
Astrid Liedert ◽  
Simon von Kroge ◽  
Melanie Haffner‐Luntzer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document