Author response for "Piezo1 Inactivation in Chondrocytes Impairs Trabecular Bone Formation"

Author(s):  
Gretl Hendrickx ◽  
Verena Fischer ◽  
Astrid Liedert ◽  
Simon von Kroge ◽  
Melanie Haffner‐Luntzer ◽  
...  
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jingyan Fu ◽  
Matthew Goldsmith ◽  
Sequoia D. Crooks ◽  
Sean F. Condon ◽  
Martin Morris ◽  
...  

AbstractAnimals in space exploration studies serve both as a model for human physiology and as a means to understand the physiological effects of microgravity. To quantify the microgravity-induced changes to bone health in animals, we systematically searched Medline, Embase, Web of Science, BIOSIS, and NASA Technical reports. We selected 40 papers focusing on the bone health of 95 rats, 61 mice, and 9 rhesus monkeys from 22 space missions. The percentage difference from ground control in rodents was –24.1% [Confidence interval: −43.4, −4.9] for trabecular bone volume fraction and –5.9% [−8.0, −3.8] for the cortical area. In primates, trabecular bone volume fraction was lower by –25.2% [−35.6, −14.7] in spaceflight animals compared to GC. Bone formation indices in rodent trabecular and cortical bone were significantly lower in microgravity. In contrast, osteoclast numbers were not affected in rats and were variably affected in mice. Thus, microgravity induces bone deficits in rodents and primates likely through the suppression of bone formation.


2002 ◽  
Vol 17 (1) ◽  
pp. 119-127 ◽  
Author(s):  
Akinori Sakai ◽  
Takeshi Sakata ◽  
Shinya Tanaka ◽  
Ryuji Okazaki ◽  
Naoki Kunugita ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2200
Author(s):  
Weirong Xing ◽  
Sheila Pourteymoor ◽  
Gustavo A. Gomez ◽  
Yian Chen ◽  
Subburaman Mohan

We previously showed that conditional disruption of the Phd2 gene in chondrocytes led to a massive increase in long bone trabecular bone mass. Loss of Phd2 gene expression or inhibition of PHD2 activity by a specific inhibitor resulted in a several-fold compensatory increase in Phd3 expression in chondrocytes. To determine if expression of PHD3 plays a role in endochondral bone formation, we conditionally disrupted the Phd3 gene in chondrocytes by crossing Phd3 floxed (Phd3flox/flox) mice with Col2α1-Cre mice. Loss of Phd3 expression in the chondrocytes of Cre+; Phd3flox/flox conditional knockout (cKO) mice was confirmed by real time PCR. At 16 weeks of age, neither body weight nor body length was significantly different in the Phd3 cKO mice compared to Cre−; Phd3flox/flox wild-type (WT) mice. Areal BMD measurements of total body as well as femur, tibia, and lumbar skeletal sites were not significantly different between the cKO and WT mice at 16 weeks of age. Micro-CT measurements revealed significant gender differences in the trabecular bone volume adjusted for tissue volume at the secondary spongiosa of the femur and the tibia for both genotypes, but no genotype difference was found for any of the trabecular bone measurements of either the femur or the tibia. Trabecular bone volume of distal femur epiphysis was not different between cKO and WT mice. Histology analyses revealed Phd3 cKO mice exhibited a comparable chondrocyte differentiation and proliferation, as evidenced by no changes in cartilage thickness and area in the cKO mice as compared to WT littermates. Consistent with the in vivo data, lentiviral shRNA-mediated knockdown of Phd3 expression in chondrocytes did not affect the expression of markers of chondrocyte differentiation (Col2, Col10, Acan, Sox9). Our study found that Phd2 but not Phd3 expressed in chondrocytes regulates endochondral bone formation, and the compensatory increase in Phd3 expression in the chondrocytes of Phd2 cKO mice is not the cause for increased trabecular bone mass in Phd2 cKO mice.


Author(s):  
Gretl Hendrickx ◽  
Verena Fischer ◽  
Astrid Liedert ◽  
Kroge Simon von ◽  
Melanie Haffner-Luntzer ◽  
...  

1986 ◽  
Vol 251 (4) ◽  
pp. E400-E406 ◽  
Author(s):  
P. J. Marie ◽  
L. Cancela ◽  
N. Le Boulch ◽  
L. Miravet

The effects of pregnancy and lactation on endosteal bone formation and resorption were evaluated in vitamin D-depleted (-D) and vitamin D-repleted (+D) rats. Pregnancy induced a marked stimulation of osteoclastic bone resorption and of static and dynamic parameters of bone formation and mineralization. Bone resorption increased independently of vitamin D status and did not correlate with plasma 1,25-dihydroxyvitamin D3 [1,25(OH)2D] levels, but it was associated with increased plasma immunoreactive parathyroid hormone (iPTH) concentrations. Stimulation of the endosteal bone formation rate was mainly impaired in D-depleted rats, resulting in trabecular bone loss, which, in -D mother rats, was associated with decreased bone ash and total bone calcium. Lactation further stimulated bone resorption and reduced the trabecular bone volume; ash weight and bone calcium content were also decreased independently of the vitamin D status and changes in plasma iPTH levels. In presence of vitamin D, the bone formation rate increased fourfold during lactation but was unchanged in -D lactating rats. During lactation, vitamin D-depleted rats lost twofold more calcified bone than +D rats because of impaired mineralization. Thus, the present study shows that both the endosteal bone resorption and formation are stimulated by pregnancy and lactation and that vitamin D is required for normal bone mineralization during the reproductive period.


2018 ◽  
Vol 238 (1) ◽  
pp. 13-23 ◽  
Author(s):  
Thomas Funck-Brentano ◽  
Karin H Nilsson ◽  
Robert Brommage ◽  
Petra Henning ◽  
Ulf H Lerner ◽  
...  

WNT signaling is involved in the tumorigenesis of various cancers and regulates bone homeostasis. Palmitoleoylation of WNTs by Porcupine is required for WNT activity. Porcupine inhibitors are under development for cancer therapy. As the possible side effects of Porcupine inhibitors on bone health are unknown, we determined their effects on bone mass and strength. Twelve-week-old C57BL/6N female mice were treated by the Porcupine inhibitors LGK974 (low dose = 3 mg/kg/day; high dose = 6 mg/kg/day) or Wnt-C59 (10 mg/kg/day) or vehicle for 3 weeks. Bone parameters were assessed by serum biomarkers, dual-energy X-ray absorptiometry, µCT and histomorphometry. Bone strength was measured by the 3-point bending test. The Porcupine inhibitors were well tolerated demonstrated by normal body weight. Both doses of LGK974 and Wnt-C59 reduced total body bone mineral density compared with vehicle treatment (P < 0.001). Cortical thickness of the femur shaft (P < 0.001) and trabecular bone volume fraction in the vertebral body (P < 0.001) were reduced by treatment with LGK974 or Wnt-C59. Porcupine inhibition reduced bone strength in the tibia (P < 0.05). The cortical bone loss was the result of impaired periosteal bone formation and increased endocortical bone resorption and the trabecular bone loss was caused by reduced trabecular bone formation and increased bone resorption. Porcupine inhibitors exert deleterious effects on bone mass and strength caused by a combination of reduced bone formation and increased bone resorption. We suggest that cancer targeted therapies using Porcupine inhibitors may increase the risk of fractures.


1984 ◽  
Vol 29 (3) ◽  
pp. 171-175 ◽  
Author(s):  
B. E. C. Nordin ◽  
J. Aaron ◽  
R. Speed ◽  
R. M. Francis ◽  
N. Makins

Trabecular bone volume, forming surface and percent surface resorption have been determined in iliac crest samples obtained post mortem from 43 young men and 49 elderly men and in biopsies obtained from 22 males with spinal osteoporosis. The mean bone volume was significantly lower in the old than in the young controls and significantly lower again in the osteoporotic cases. Forming surfaces were significantly lower in the old than the young controls but were not different as between old controls and cases of osteoporosis. Percent surface resorption was the same in young and old controls but significantly increased in the osteoporotics. Multiple regression analysis showed that trabecular bone volume was a significant positive function of forming surface and a significant inverse function of fractional surface resorption. Age-related (simple) osteoporosis in men appears to be due to reduced bone formation whereas pathological (accelerated) osteoporosis is due to increased bone resorption.


Sign in / Sign up

Export Citation Format

Share Document