scholarly journals A modified Cuckoo Search algorithm based optimal band subset selection approach for hyperspectral image classification

Author(s):  
Shrutika Sawant ◽  
Manoharan Prabukumar ◽  
Sathishkumar Samiappan

Band selection is an effective way to reduce the size of hyperspectral data and to overcome the “curse of dimensionality” in ground object classification. This paper presents a band selection approach based on modified Cuckoo Search (CS) optimisation with correlation-based initialisation. CS is a popular metaheuristic algorithm with efficient optimisation capabilities for band selection. However, it can easily fall into local optimum solutions. To avoid falling into a local optimum, an initialisation strategy based on correlation is adopted instead of random initialisation to initiate the location of nests. Experimental results with Indian Pines, Salinas and Pavia University datasets show that the proposed approach obtains overall accuracy of 82.83 %, 94.83 % and 91.79 %, respectively, which is higher than the original CS algorithm, Genetic Algorithm (GA), Particle Swarm Optimisation (PSO) and Gray Wolf Optimisation (GWO).

Author(s):  
Juan Li ◽  
Dan-dan Xiao ◽  
Ting Zhang ◽  
Chun Liu ◽  
Yuan-xiang Li ◽  
...  

Abstract As a novel swarm intelligence optimization algorithm, cuckoo search (CS) has been successfully applied to solve diverse problems in the real world. Despite its efficiency and wide use, CS has some disadvantages, such as premature convergence, easy to fall into local optimum and poor balance between exploitation and exploration. In order to improve the optimization performance of the CS algorithm, a new CS extension with multi-swarms and Q-Learning namely MP-QL-CS is proposed. The step size strategy of the CS algorithm is that an individual fitness value is examined based on a one-step evolution effect of an individual instead of evaluating the step size from the multi-step evolution effect. In the MP-QL-CS algorithm, a step size control strategy is considered as action, which is used to examine the individual multi-stepping evolution effect and learn the individual optimal step size by calculating the Q function value. In this way, the MP-QL-CS algorithm can increase the adaptability of individual evolution, and a good balance between diversity and intensification can be achieved. Comparing the MP-QL-CS algorithm with various CS algorithms, variants of differential evolution (DE) and improved particle swarm optimization (PSO) algorithms, the results demonstrate that the MP-QL-CS algorithm is a competitive swarm algorithm.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yanhong Feng ◽  
Ke Jia ◽  
Yichao He

Cuckoo search (CS) is a new robust swarm intelligence method that is based on the brood parasitism of some cuckoo species. In this paper, an improved hybrid encoding cuckoo search algorithm (ICS) with greedy strategy is put forward for solving 0-1 knapsack problems. First of all, for solving binary optimization problem with ICS, based on the idea of individual hybrid encoding, the cuckoo search over a continuous space is transformed into the synchronous evolution search over discrete space. Subsequently, the concept of confidence interval (CI) is introduced; hence, the new position updating is designed and genetic mutation with a small probability is introduced. The former enables the population to move towards the global best solution rapidly in every generation, and the latter can effectively prevent the ICS from trapping into the local optimum. Furthermore, the greedy transform method is used to repair the infeasible solution and optimize the feasible solution. Experiments with a large number of KP instances show the effectiveness of the proposed algorithm and its ability to achieve good quality solutions.


Author(s):  
Mohammad Shehab ◽  
Ahamad Tajudin Khader ◽  
Makhlouf Laouchedi

Cuckoo search algorithm is considered one of the promising metaheuristic algorithms applied to solve numerous problems in different fields. However, it undergoes the premature convergence problem for high dimensional problems because the algorithm converges rapidly. Therefore, we proposed a robust approach to solve this issue by hybridizing optimization algorithm, which is a combination of Cuckoo search algorithmand Hill climbing called CSAHC discovers many local optimum traps by using local and global searches, although the local search method is trapped at the local minimum point. In other words, CSAHC has the ability to balance between the global exploration of the CSA and the deep exploitation of the HC method. The validation of the performance is determined by applying 13 benchmarks. The results of experimental simulations prove the improvement in the efficiency and the effect of the cooperation strategy and the promising of CSAHC.  


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Ziping He ◽  
Kewen Xia ◽  
Wenjia Niu ◽  
Nelofar Aslam ◽  
Jingzhong Hou

Semisupervised support vector machine (S3VM) algorithm mainly depends on the predicted accuracy of unlabeled samples, if lots of misclassified unlabeled samples are added to the training will make the training model performance degrade. Thus, the cuckoo search algorithm (CS) is used to optimize the S3VM which also enhances the model performance of S3VM. Considering that the cuckoo search algorithm is limited to the local optimum problem, a new cuckoo search algorithm based on chaotic catfish effect optimization is proposed. First, use the chaotic mechanism with high randomness to initialize the nest for range expansion. Second, chaotic catfish nest is introduced into the effective competition coordination mechanism after falling into the local optimum, so that the candidate’s nest can jump out of the local optimal solution and accelerate the convergence ability. In the experiment, results show that the improved cuckoo search algorithm is effective and better than the particle swarm optimization (PSO) algorithm and the cuckoo search algorithm on the benchmark functions. In the end, the improved cuckoo search algorithm is used to optimize semisupervised SVM which is applied into oil layer recognition. Results show that this optimization model is superior to the semisupervised SVM in terms of recognition rate and time.


Author(s):  
Shrutika Sawant ◽  
Manoharan Prabukumar

Hyperspectral images usually contain hundreds of contiguous spectral bands, which can precisely discriminate the various spectrally similar classes. However, such high-dimensional data also contain highly correlated and irrelevant information, leading to the curse of dimensionality (also called the Hughes phenomenon). It is necessary to reduce these bands before further analysis, such as land cover classification and target detection. Band selection is an effective way to reduce the size of hyperspectral data and to overcome the curse of the dimensionality problem in ground object classification. Focusing on the classification task, this article provides an extensive and comprehensive survey on band selection techniques describing the categorisation of methods, methodology used, different searching approaches and various technical difficulties, as well as their performances. Our purpose is to highlight the progress attained in band selection techniques for hyperspectral image classification and to identify possible avenues for future work, in order to achieve better performance in real-time operation.


2020 ◽  
Vol 39 (6) ◽  
pp. 8125-8137
Author(s):  
Jackson J Christy ◽  
D Rekha ◽  
V Vijayakumar ◽  
Glaucio H.S. Carvalho

Vehicular Adhoc Networks (VANET) are thought-about as a mainstay in Intelligent Transportation System (ITS). For an efficient vehicular Adhoc network, broadcasting i.e. sharing a safety related message across all vehicles and infrastructure throughout the network is pivotal. Hence an efficient TDMA based MAC protocol for VANETs would serve the purpose of broadcast scheduling. At the same time, high mobility, influential traffic density, and an altering network topology makes it strenuous to form an efficient broadcast schedule. In this paper an evolutionary approach has been chosen to solve the broadcast scheduling problem in VANETs. The paper focusses on identifying an optimal solution with minimal TDMA frames and increased transmissions. These two parameters are the converging factor for the evolutionary algorithms employed. The proposed approach uses an Adaptive Discrete Firefly Algorithm (ADFA) for solving the Broadcast Scheduling Problem (BSP). The results are compared with traditional evolutionary approaches such as Genetic Algorithm and Cuckoo search algorithm. A mathematical analysis to find the probability of achieving a time slot is done using Markov Chain analysis.


Sign in / Sign up

Export Citation Format

Share Document